400 GHS to BTC - Exchange - How much Bitcoin (BTC) is 400

howmanyconfs.com - How does the security of different Proof-of-Work blockchains compare to Bitcoin?

https://howmanyconfs.com
Original post in Bitcoin here: https://np.reddit.com/Bitcoin/comments/biokgy/howmanyconfscom_how_does_the_security_of/

https://github.com/lukechilds/howmanyconfs.com/raw/mastescreenshot.png

How are these values calculated?

It's easy to compare blockchain hashrates when the Proof-of-Work algorithm is the same. For example if Bitcoin has a hashrate of SHA-256 @ 40 PH/s and Bitcoin Cash has a hashrate of SHA-256 @ 2 PH/s, it's easy to see that for a given period of time the Bitcoin blockchain will have 20x (40/2) the amount of work securing it than the Bitcoin Cash blockchain. Or to say that differently, you need to wait for 20x more Bitcoin Cash confirmations before an equivalent amount of work has been done compared to the Bitcoin blockchain. So 6 Bitcoin confirmations would be roughly equivalent to 120 Bitcoin Cash confirmations in the amount of work done.
However if the Proof-of-Work algorithms are different, how can we compare the hashrate? If we're comparing Bitcoin (SHA-256 @ 40 PH/s) against Litecoin (Scrypt @ 300 TH/s), the hashes aren't equal, one round of SHA-256 is not equivalent to one round of Scrypt.
What we really want to know is how much energy is being consumed to provide the current hash rate. Literal energy, as in joules or kilowatt hours. It would be great if we had a universal metric across blockchains like kWh/s to measure immutability.
However that's fairly hard to calculate, we need to know the average power consumption of the average device used to mine. For GPU/CPU mined Proof-of-Work algorithms this varies greatly. For ASIC mined Proof-of-Work algorithms it varies less, however it's likely that ASIC manufacturers are mining with next generation hardware long before the public is made aware of them, which we can't account for.
There's no automated way to get this data and no reliable data source to scrape it from. We'd need to manually research all mining hardware and collate the data ourself. And as soon as newer mining hardware comes out our results will be outdated.
Is there a simpler way to get an estimated amount of work per blockchain in a single metric we can use for comparisons?
Yeah, there is, we can use NiceHash prices to estimate the cost in $ to secure a blockchain for a given timeframe. This is directly comparable across blockchains and should be directly proportionate to kWh/s, because after all, the energy needs to be paid for in $.
How can we estimate this?
Now we have an estimated total Proof-of-Work metric measured in dollars per second ($/s).
The $/s metric may not be that accurate. Miners will mark up the cost when reselling on NiceHash and we're making the assumption that NiceHash supply is infinite. You can't actually rent 100% of Bitcoin's hashpower from NiceHash, there isn't enough supply.
However that's not really an issue for this metric, we aren't trying to calculate the theoretical cost to rent an additional 100% of the hashrate, we're trying to get a figure that allows us to compare the cost of the current total hashrate accross blockchains. Even if the exact $ value we end up with is not that accurate, it should still be proportionate to kWh/s. This means it's still an accurate metric to compare the difference in work done over a given amount of time between blockchains.
So how do we compare these values between blockchains?
Once we've done the above calculations and got a $/s cost for each blockchain, we just need to factor in the average block time and calculate the total $ cost for a given number of confirmations. Then see how much time is required on the other blockchain at it's $/s value to equal the total cost.
So to calculate how many Litecoin confirmations are equivalent to 6 Bitcoin confirmations we would do:
Therefore we can say that 240 Litecoin confirmations are roughly equal to 6 Bitcoin confirmations in total amount of work done.

Notes

$/s doesn't mean what it sounds like it means.

The $/s values should not be taken as literal costs.
For example:
This is does not mean you could do a 51% attack on Bitcoin and roll back 6 blocks for a cost of $360,000. An attack like that would be much more expensive.
The $/s value is a metric to compare the amount of work at the current hashrate between blockchains. It is not the same as the cost to add hashrate to the network.
When adding hashrate to a network the cost will not scale linearly with hashrate. It will jump suddenly at certain intervals.
For example, once you've used up the available hashrate on NiceHash you need to add the costs of purchasing ASICs, then once you've bought all the ASICs in the world, you'd need to add the costs of fabricating your own chips to keep increasing hashrate.

These metrics are measuring "work done", not security.

More "work done" doesn't necessarily mean "more security".
For example take the following two blockchains:
Bitcoin Cash has a higher $/s value than Zcash so we can deduce it has more "work done" over a given timeframe than Zcash. More kWh/s are required to secure it's blockchain. However does that really mean it's safer?
Zcash is the dominant blockchain for it's Proof-of-Work algorithm (Equihash). Whereas Bitcoin Cash isn't, it uses the same algorithm as Bitcoin. In fact just 5% of Bitcoin's hashrate is equivalent to all of Bitcoin Cash's hashrate.
This means the cost of a 51% attack against Bitcoin Cash could actually be much lower than a 51% attack against Zcash, even though you need to aquire more kWh/s of work, the cost to aquire those kWh/s will likely be lower.
To attack Bitcoin Cash you don't need to acquire any hardware, you just need to convince 5% of the Bitcoin hashrate to lend their SHA-256 hashpower to you.
To attack Zcash, you would likely need to fabricate your own Equihash ASICs, as almost all the Equihash mining hardware in the world is already securing Zcash.

Accurately calculating security is much more complicated.

These metrics give a good estimated value to compare the hashrate accross different Proof-of-Work blockchains.
However to calculate if a payment can be considered "finalised" involves many more variables.
You should factor in:
If the cryptocurrency doesn't dominate the Proof-of-Work it can be attacked more cheaply.
If the market cap or trading volume is really low, an attacker may crash the price of the currency before they can successfully double spend it and make a profit. Although that's more relevant in the context of exchanges rather than individuals accepting payments.
If the value of the transaction is low enough, it may cost more to double spend than an attacker would profit from the double spend.
Ultimately, once the cost of a double spend becomes higher than an attacker can expect to profit from the double spend, that is when a payment can probably be considered "finalised".
submitted by dyslexiccoder to CryptoCurrency [link] [comments]

I've been working on a bot for crypto subs like /r/bitcoin for a few days now. Say hello to crypto_bot!

Hey guys, I've been working on crypto_bot for some time now. It provides a bunch of features that I hope will enhance your experience on /bitcoin (and any other subreddit). You can call it by mentioning it in a comment. I started working on this a few days ago. I'm constantly adding new features and will update this post when I do, but if you're interested I'll post all updates and some tips at /crypto_bot. Please either comment here, message me, or post there if you'd like to report a bug, request a feature, or offer feedback. There's also one hidden command :)
You can call multiple commands in one comment. Here's a description of the commands you can use:

Market Data:

crypto_bot 
Responds with the USD price of one bitcoin from an average of six of the top bitcoin exchanges (BTC-E, Bitstamp, Bitfinex, Coinbase, Kraken, Cryptsy).
crypto_bot ticker 
Responds with the USD price of one bitcoin at seven exchanges (all of the ones listed above, plus LocalBitcoins). Also lists the average at the bottom.
crypto_bot [exchange] 
Responds with the USD price of one bitcoin from [exchange] (any of the seven listed above).
crypto_bot [litecoin|ltc|dogecoin|doge] 
Responds with the USD price of one litecoin, or the price of 1 doge and 1,000 doge.
crypto_bot litecoin|ltc [exchange] 
Responds with the USD price of one litecoin from BTC-E, Bitfinex, Kraken, or Cryptsy.
crypto_bot [currency] 
Responds with the price of one bitcoin in the specified currency. Available currencies (symbols): JPY, CNY, SGD, HKD, CAD, NZD, AUD, CLP, GBP, DKK, SEK, ISK, CHF, BRL, EUR, RUB, PLN, THB, KRW, TWD.

Information:

crypto_bot [about|info] [arg] 
Responds with a short description about [arg], as well as a link to an external site (Wikipedia, bitcoin.it, and some others) for more information. You can list multiple arguments and get a description for each. Available arguments: bitcoin, block chain, transaction, address, genesis, satoshi, mining, confirmation, coinbase, gox, cold wallet, hot wallet.
crypto_bot legal 
Responds with a chart about the legality of bitcoin in 40 countries, copied straight from Wikipedia.
crypto_bot [explain transaction delay|explain tx delay] 
Responds with an explanation of why transactions may take longer to confirm (the bot specifically discusses spam-transaction attacks in this command).

Network information/tools:

crypto_bot difficulty 
Responds with the current difficulty of the bitcoin network.
crypto_bot [height|number of blocks] 
Responds with the current height of the block chain.
crypto_bot retarget 
Responds with what block the difficulty will recalculate at, as well as how many blocks until the network reaches that block.
crypto_bot [unconfirmed transactions|unconfirmed tx] 
Responds with the current number of unconfirmed transactions.
crypto_bot [new address|generate address] 
Responds with a newly-generated public and private key. This is mainly to provide an explanation of what both look like, and contains a clear warning to not use or send bitcoins to the address.
crypto_bot blockinfo [height] 
Responds with information about block #[height], including its hash, time discovered, and number of transactions.
crypto_bot [address] 
Responds with information about [address], including its balance and number of transactions.
crypto_bot [transaction_id] 
Responds with information about [transaction_id], including what block it was included in, its size, and its inputs and outputs.

Calculators:

crypto_bot calc <# miningspeed> [#][w] [#][kwh] [#][difficulty] [hc$#] [$#] [#%] 
Responds with calculations and information about how a miner would do with the above data (mining calculator). The only required field is mining speed. Order of the arguments does not matter. Everything other than hashrate defaults to the following if not given: w (watts): 0, kwh ($kilowatt cost/hour): 0, difficulty: current network difficulty, hc$ (hardware cost): $0, $: current bitcoin price in usd (according to Coinbase), % (pool fee): 0. The calculator does not account for nor allow for input of the increase/decrease of difficulty over time, though I may add this feature soon. Working hashing speeds: h/s, kh/s, mh/s, gh/s, th/s, ph/s.
Example usage: "crypto_bot calc 30th/s 10w .12kwh hc$55 1.5%" (to make it easier to remember, th/s can also be inputted as ths). This calls the bot with a hashrate of 30 th/s, electricity usage of 10w, a cost of $.12 kWh, a hardware cost of $55, and a pool fee of 1.5%.
crypto_bot number of btc <$amount to convert> [bp$bitcoin price] 
Responds with the number of bitcoins you could buy with <$amount to convert>. If the comment specifies a [bp$bitcoin price], it calculates it with that exchange rate. Otherwise, it uses the rate from Coinbase.
Example usage: "crypto_bot $419.29 bp$180.32" This calculates how many bitcoins you can buy if you have $419.29 and the bitcoin exchange rate is $180.32.

Broadcasting

SignMessage! "" 
Signs a message in the bitcoin block chain in a transaction using OP_RETURN. The message must be less than 40 characters.
Example usage: "SignMessage! "Post messages in the block chain!""
I hope you find this bot useful! Again, if you have any questions or comments, please either comment on this post, message me, or post on /crypto_bot.
Update 1 (June 24, 2015, 17:35): The bot now responds with information if you post a link to a block, transaction, or address on Blockchain.info in a comment, even if you don't call it. For example, if I wrote "https://blockchain.info/block/0000000000000000126448be07fb1f82af19fbbf07dd7e07ebcd08d42c2660cb" in a comment, it would respond with information about block #362,377.
Update 2 (July 10, 2015, 1:59): The bot now has two additional commands: "unconfirmed transactions" (or "unconfirmed tx") and "explain transaction delay" (or "explain tx delay"). The first command responds with the number of unconfirmed transactions, and the second explains why transactions might take extra time to confirm.
Update 3 (August 24, 2015, 1:34): The bot now responds in a better way than before when transaction ids or addresses are posted. Before, it only responded when the transaction id or address was used in a link to Blockchain.info. Now the bot will respond whenever a transaction id or address is posted at all; a link to Blockchain.info is no longer necessary.
Update 4 (August 27, 2015, 3:00): The bot can now sign messages in the Bitcoin block chain using OP_RETURN.
submitted by busterroni to Bitcoin [link] [comments]

Decred Journal — May 2018

Note: New Reddit look may not highlight links. See old look here. A copy is hosted on GitHub for better reading experience. Check it out, contains photo of the month! Also on Medium

Development

dcrd: Significant optimization in signature hash calculation, bloom filters support was removed, 2x faster startup thanks to in-memory full block index, multipeer work advancing, stronger protection against majority hashpower attacks. Additionally, code refactoring and cleanup, code and test infrastructure improvements.
In dcrd and dcrwallet developers have been experimenting with new modular dependency and versioning schemes using vgo. @orthomind is seeking feedback for his work on reproducible builds.
Decrediton: 1.2.1 bugfix release, work on SPV has started, chart additions are in progress. Further simplification of the staking process is in the pipeline (slack).
Politeia: new command line tool to interact with Politeia API, general development is ongoing. Help with testing will soon be welcome: this issue sets out a test plan, join #politeia to follow progress and participate in testing.
dcrdata: work ongoing on improved design, adding more charts and improving Insight API support.
Android: design work advancing.
Decred's own DNS seeder (dcrseeder) was released. It is written in Go and it properly supports service bit filtering, which will allow SPV nodes to find full nodes that support compact filters.
Ticket splitting service by @matheusd entered beta and demonstrated an 11-way split on mainnet. Help with testing is much appreciated, please join #ticket_splitting to participate in splits, but check this doc to learn about the risks. Reddit discussion here.
Trezor support is expected to land in their next firmware update.
Decred is now supported by Riemann, a toolbox from James Prestwich to construct transactions for many UTXO-based chains from human-readable strings.
Atomic swap with Ethereum on testnet was demonstrated at Blockspot Conference LATAM.
Two new faces were added to contributors page.
Dev activity stats for May: 238 active PRs, 195 master commits, 32,831 added and 22,280 deleted lines spread across 8 repositories. Contributions came from 4-10 developers per repository. (chart)

Network

Hashrate: rapid growth from ~4,000 TH/s at the beginning of the month to ~15,000 at the end with new all time high of 17,949. Interesting dynamic in hashrate distribution across mining pools: coinmine.pl share went down from 55% to 25% while F2Pool up from 2% to 44%. [Note: as of June 6, the hashrate continues to rise and has already passed 22,000 TH/s]
Staking: 30-day average ticket price is 91.3 DCR (+0.8), stake participation is 46.9% (+0.8%) with 3.68 million DCR locked (+0.15). Min price was 85.56. On May 11 ticket price surged to 96.99, staying elevated for longer than usual after such a pump. Locked DCR peaked at 47.17%. jet_user on reddit suggested that the DCR for these tickets likely came from a miner with significant hashrate.
Nodes: there are 226 public listening and 405 normal nodes per dcred.eu. Version distribution: 45% on v1.2.0 (up from 24% last month), 39% on v1.1.2, 15% on v1.1.0 and 1% running outdaded versions.

ASICs

Obelisk team posted an update. Current hashrate estimate of DCR1 is 1200 GH/s at 500 W and may still change. The chips came back at 40% the speed of the simulated results, it is still unknown why. Batch 1 units may get delayed 1-2 weeks past June 30. See discussions on decred and on siacoin.
@SiaBillionaire estimated that 7940 DCR1 units were sold in Batches 1-5, while Lynmar13 shared his projections of DCR1 profitability (reddit).
A new Chinese miner for pre-order was noticed by our Telegram group. Woodpecker WB2 specs 1.5 TH/s at 1200 W, costs 15,000 CNY (~2,340 USD) and the initial 150 units are expected to ship on Aug 15. (pow8.comtranslated)
Another new miner is iBelink DSM6T: 6 TH/s at 2100 W costing $6,300 (ibelink.co). Shipping starts from June 5. Some concerns and links were posted in these two threads.

Integrations

A new mining pool is available now: altpool.net. It uses PPLNS model and takes 1% fee.
Another infrastructure addition is tokensmart.io, a newly audited stake pool with 0.8% fee. There are a total of 14 stake pools now.
Exchange integrations:
OpenBazaar released an update that allows one to trade cryptocurrencies, including DCR.
@i2Rav from i2trading is now offering two sided OTC market liquidity on DCUSD in #trading channel.
Paytomat, payments solution for point of sale and e-commerce, integrated Decred. (missed in April issue)
CoinPayments, a payment processor supporting Decred, developed an integration with @Shopify that allows connected merchants to accept cryptocurrencies in exchange for goods.

Adoption

New merchants:
An update from VotoLegal:
michae2xl: Voto Legal: CEO Thiago Rondon of Appcívico, has already been contacted by 800 politicians and negotiations have started with four pre-candidates for the presidency (slack, source tweet)
Blockfolio rolled out Signal Beta with Decred in the list. Users who own or watch a coin will automatically receive updates pushed by project teams. Nice to see this Journal made it to the screenshot!
Placeholder Ventures announced that Decred is their first public investment. Their Investment Thesis is a clear and well researched overview of Decred. Among other great points it noted the less obvious benefit of not doing an ICO:
By choosing not to pre-sell coins to speculators, the financial rewards from Decred’s growth most favor those who work for the network.
Alex Evans, a cryptoeconomics researcher who recently joined Placeholder, posted his 13-page Decred Network Analysis.

Marketing

@Dustorf published March–April survey results (pdf). It analyzes 166 responses and has lots of interesting data. Just an example:
"I own DECRED because I saw a YouTube video with DECRED Jesus and after seeing it I was sold."
May targeted advertising report released. Reach @timhebel for full version.
PiedPiperCoin hired our advisors.
More creative promos by @jackliv3r: Contributing, Stake Now, The Splitting, Forbidden Exchange, Atomic Swaps.
Reminder: Stakey has his own Twitter account where he tweets about his antics and pours scorn on the holders of expired tickets.
"Autonomy" coin sculpture is available at sigmasixdesign.com.

Events

BitConf in Sao Paulo, Brazil. Jake Yocom-Piatt presented "Decentralized Central Banking". Note the mini stakey on one of the photos. (articletranslated, photos: 1 2 album)
Wicked Crypto Meetup in Warsaw, Poland. (video, photos: 1 2)
Decred Polska Meetup in Katowice, Poland. First known Decred Cake. (photos: 1 2)
Austin Hispanic Hackers Meetup in Austin, USA.
Consensus 2018 in New York, USA. See videos in the Media section. Select photos: booth, escort, crew, moon boots, giant stakey. Many other photos and mentions were posted on Twitter. One tweet summarized Decred pretty well:
One project that stands out at #Consensus2018 is @decredproject. Not annoying. Real tech. Humble team. #BUIDL is strong with them. (@PallerJohn)
Token Summit in New York, USA. @cburniske and @jmonegro from Placeholder talked "Governance and Cryptoeconomics" and spoke highly of Decred. (twitter coverage: 1 2, video, video (from 32 min))
Campus Party in Bahia, Brazil. João Ferreira aka @girino and Gabriel @Rhama were introducing Decred, talking about governance and teaching to perform atomic swaps. (photos)
Decred was introduced to the delegates from Shanghai's Caohejing Hi-Tech Park, organized by @ybfventures.
Second Decred meetup in Hangzhou, China. (photos)
Madison Blockchain in Madison, USA. "Lots of in-depth questions. The Q&A lasted longer than the presentation!". (photo)
Blockspot Conference Latam in Sao Paulo, Brazil. (photos: 1, 2)
Upcoming events:
There is a community initiative by @vj to organize information related to events in a repository. Jump in #event_planning channel to contribute.

Media

Decred scored B (top 3) in Weiss Ratings and A- (top 8) in Darpal Rating.
Chinese institute is developing another rating system for blockchains. First round included Decred (translated). Upon release Decred ranked 26. For context, Bitcoin ranked 13.
Articles:
Audios:
Videos:

Community Discussions

Community stats: Twitter 39,118 (+742), Reddit 8,167 (+277), Slack 5,658 (+160). Difference is between May 5 and May 31.
Reddit highlights: transparent up/down voting on Politeia, combining LN and atomic swaps, minimum viable superorganism, the controversial debate on Decred contractor model (people wondered about true motives behind the thread), tx size and fees discussion, hard moderation case, impact of ASICs on price, another "Why Decred?" thread with another excellent pitch by solar, fee analysis showing how ticket price algorithm change was controversial with ~100x cut in miner profits, impact of ticket splitting on ticket price, recommendations on promoting Decred, security against double spends and custom voting policies.
@R3VoLuT1OneR posted a preview of a proposal from his company for Decred to offer scholarships for students.
dcrtrader gained a couple of new moderators, weekly automatic threads were reconfigured to monthly and empty threads were removed. Currently most trading talk happens on #trading and some leaks to decred. A separate trading sub offers some advantages: unlimited trading talk, broad range of allowed topics, free speech and transparent moderation, in addition to standard reddit threaded discussion, permanent history and search.
Forum: potential social attacks on Decred.
Slack: the #governance channel created last month has seen many intelligent conversations on topics including: finite attention of decision makers, why stakeholders can make good decisions (opposed to a common narrative than only developers are capable of making good decisions), proposal funding and contractor pre-qualification, Cardano and Dash treasuries, quadratic voting, equality of outcome vs equality of opportunity, and much more.
One particularly important issue being discussed is the growing number of posts arguing that on-chain governance and coin voting is bad. Just a few examples from Twitter: Decred is solving an imagined problem (decent response by @jm_buirski), we convince ourselves that we need governance and ticket price algo vote was not controversial, on-chain governance hurts node operators and it is too early for it, it robs node operators of their role, crypto risks being captured by the wealthy, it is a huge threat to the whole public blockchain space, coin holders should not own the blockchain.
Some responses were posted here and here on Twitter, as well as this article by Noah Pierau.

Markets

The month of May has seen Decred earn some much deserved attention in the markets. DCR started the month around 0.009 BTC and finished around 0.0125 with interim high of 0.0165 on Bittrex. In USD terms it started around $81 and finished around $92, temporarily rising to $118. During a period in which most altcoins suffered, Decred has performed well; rising from rank #45 to #30 on Coinmarketcap.
The addition of a much awaited KRW pair on Upbit saw the price briefly double on some exchanges. This pair opens up direct DCR to fiat trading in one of the largest cryptocurrency markets in the world.
An update from @i2Rav:
We have begun trading DCR in large volume daily. The interest around DCR has really started to grow in terms of OTC quote requests. More and more customers are asking about trading it.
Like in previous month, Decred scores high by "% down from ATH" indicator being #2 on onchainfx as of June 6.

Relevant External

David Vorick (@taek) published lots of insights into the world of ASIC manufacturing (reddit). Bitmain replied.
Bitmain released an ASIC for Equihash (archived), an algorithm thought to be somewhat ASIC-resistant 2 years ago.
Three pure PoW coins were attacked this month, one attempting to be ASIC resistant. This shows the importance of Decred's PoS layer that exerts control over miners and allows Decred to welcome ASIC miners for more PoW security without sacrificing sovereignty to them.
Upbit was raided over suspected fraud and put under investigation. Following news reported no illicit activity was found and suggested and raid was premature and damaged trust in local exchanges.
Circle, the new owner of Poloniex, announced a USD-backed stablecoin and Bitmain partnership. The plan is to make USDC available as a primary market on Poloniex. More details in the FAQ.
Poloniex announced lower trading fees.
Bittrex plans to offer USD trading pairs.
@sumiflow made good progress on correcting Decred market cap on several sites:
speaking of market cap, I got it corrected on coingecko, cryptocompare, and worldcoinindex onchainfx, livecoinwatch, and cryptoindex.co said they would update it about a month ago but haven't yet I messaged coinlib.io today but haven't got a response yet coinmarketcap refused to correct it until they can verify certain funds have moved from dev wallets which is most likely forever unknowable (slack)

About This Issue

Some source links point to Slack messages. Although Slack hides history older than ~5 days, you can read individual messages if you paste the message link into chat with yourself. Digging the full conversation is hard but possible. The history of all channels bridged to Matrix is saved in Matrix. Therefore it is possible to dig history in Matrix if you know the timestamp of the first message. Slack links encode the timestamp: https://decred.slack.com/archives/C5H9Z63AA/p1525528370000062 => 1525528370 => 2018-05-05 13:52:50.
Most information from third parties is relayed directly from source after a minimal sanity check. The authors of Decred Journal have no ability to verify all claims. Please beware of scams and do your own research.
Your feedback is precious. You can post on GitHub, comment on Reddit or message us in #writers_room channel.
Credits (Slack names, alphabetical order): bee, Richard-Red, snr01 and solar.
submitted by jet_user to decred [link] [comments]

Bitcoin mining, Antminer S9, $790 USD/month profit

Profit per month:
Disclosure: Mining metrics are calculated based on a network hash rate of 13,823,824,128 GH/s and using a BTC - USD exchange rate of 1 BTC = $ 16838.21. These figures vary based on the total network hash rate and on the BTC to USD conversion rate. Block reward is fixed at 12.5 BTC and future block reward reductions are not taken into account. The average block time used in the calculation is 600 seconds. The electricity price used in generating these metrics is $ 0.132 per kWh.
https://www.cryptocompare.com/mining/calculatobtc?HashingPower=14&HashingUnit=TH%2Fs&PowerConsumption=1372&CostPerkWh=0.132
Antminer S9 Specs:
https://shop.bitmain.com/antminer_s9_asic_bitcoin_miner.htm?flag=specifications
CryptoCompare shows a $790.46 USD profit per month with the following input:
1 BTC = $ 16838.21
Hasting power: 14
Power consumption (w): 1372
Cost per KW/h ($): 0.132
$790 USD/month is the total mined - total cost.
$790 is very profitable. Mining 0.05 BTC/month is very good when the current BTC price is $16k.
"According to the above inputs, the S9 will produce** 0.285 BTC / $159 per month** and 3.36 BTC / $1939 per year." - June 27, 2017 article
https://www.buybitcoinworldwide.com/mining/hardware/antminer-s9/
buybitcoinworldwide.com June 27, 2017 article shows only a profit of $159/month but BTC then was 1BTC = $2500USD.
Is it very profitable to run a bitcoin Antminer S9 now with profit of $790 USD/month?
submitted by curiousgeorge1000 to Bitcoin [link] [comments]

New Miners: it's NOT profitable to build a rig today -- a more realistic calculator

Every day on the bitcoin irc channels, I hear people talk about the profitability of mining according to some calculator.
Lets face it: The easy money came and went a couple months ago and the gold rush is over.
I hate to see people deluded by false information, because of calculators that don't take into account the rising difficulty.
Here's a more realistic calculator for 1 GH/s if someone were to build a mining rig today, and the price remained constant. It accounts for a 25% difficulty increase each period, which is reasonable.
Link: A More Realistic Mining Calculator
Don't enable "Predict exchange rate", because that part is seriously flawed.
So please, save your money. Don't throw it away on a rig that probably won't be able to recuperate its original value.
submitted by vigilyn to Bitcoin [link] [comments]

Buratino Blockchain Solutions: we have found new solutions to old problems

The market of the mining equipment continues to develop strenuously contrary to adverse conditions on the crypto exchanges. Technologies are constantly improving, increasing growth of mining profitability at the reduction of energy consumption and partly compensating negative dynamics of cryptocurrencies rates. However, it automatically increases the complexity of production of new digital coins that form request for creation of more powerful equipment.
Industry is constantly changing and miners need to be able to understand modern trends of the branch. Let’s discuss market tendencies, new technology solutions capability to affect the efficiency of this business, and how exactly our team is ready to help miners.
Mining market today Lets begin with the general review of the market, with emphasis on forecasts of the authoritative research companies. Analysts of the American consulting company Coherent Market Insights are convinced: in the medium term (5–10 years) mining will be profitable. Demand for the new equipment will remain high even during the crypto -markets depression.
According to the last forecast of the company, by 2025 mining industry will exceed the capitalization level of $16,3 billion. The indicator of cumulative average annual growth rate (CAGR), according to experts, will grow by 18,68% from 2017 to 2025.
At the time of posting, the greatest share of computing capacities has been concentrated in Asia. Experts from other large consulting company Technavio consider that the Pacific Rim will take 51% of the general growth of the industry in 2018–2022. Then the share of the Pacific Rim will be reduced below 50% level.
The cause is a hard governmental line of China in relation to crypto industry. It makes miners migrate to other countries of North and South America and Eastern Europe.
According to the Technavio, 33% of the market is now in the New World, but the share of the USA will grow, forcing out China. Coherent Market Insights experts are solidary with colleagues, and also give the future world leadership to North America.
Improvement of production technologies of cryptocurrencies and increase in productivity of the hardware remains a key tendency of the current market. Along with it large producers of microelectronics, such as Samsung and United Microelectronics Corporation are entering the market as suppliers of hi-tech accessories.
The large manufacturing companies (Bitmain Technologies, BitFury, Advanced Micro Devices, etc.) actively develop ASIC systems with bigger energy efficiency and the increased hashrate coefficients. It is important for providing the more effective mining. However alternation of generations in available lines of the equipment happens slowly that opens opportunities for new players, such as our company.
According to the Coinshares company, hashrate of the only one Bitcoin network grows by 300% annually, the efficiency of chips increases by 80%, and their cost falls on average on 50%. So the profitability of digital coins production grows even in conditions of crypto rate instability with the introduction of new technologies in ASIC-mining . 74% of the mining market is the share of ASIC of all configurations in 2017. It is expected that they will continue to dominate.
The process of improvement of the hardware leads to the growth of volumes of the mined coins. But the more is mined, the quicker the algorithm of generation of new blocks in the network complicates. As a result — miners need capacities to grow.
Escalating levels of complexity become nearly the main factor of mining equipment market growth in the medium term. For example, analysts of Technavio predict the increase in growth rates for 2018 by 9,04%.
Increase in productivity as natural selection To be a successful miner means always to work proactively. Anyone who first manages to use more productive mining systems also remains in a prize or at least in the market.
The Forbes.ru magazine describes how the market of a mining is affected by the generation of more productive machines. All of us remember the last year's agiotage around the first ASIC systems for Dash cryptocurrency. Before it was mined only on video cards and brought the monthly income of $1-1,5 thousand from one farm. New miner (DM11G from iBeLink, Antminer D3 from Bitmain and DR-100 from Pinidea) promised income from $5 thousand from each installation.
Those who the first have managed to connect ASIC to Dash network succeeded the most. Their monthly income has made about $6 thousand, but it was not for a long time. The rapid growth of the number of ASIC devices in the network has provoked the same fast increase in complexity of calculations.
Therefore the payback period of one ASIC system has increased from 3-4 to 12 months. As a result, by the end of 2017, the profitability of Dash mining has decreased almost by 3 times (in comparison with September of the same year). In completion to everything, the Dash rate has fallen off in spring 2018.
Production of cryptocurrency is favorable only to those who quickly reacts to the production of the new hardware. Only being guided by new generation equipment or modernizing old ones it is possible not to lose.
Recent leaders VS perspective beginners BitFury and Bitmain remain recognized leaders in the global market in summer 2018. BitFury generally specializes in providing mining decisions under specific projects. Bitmain, on the contrary, is guided by production and sale of the ready-made mining systems.
Today the market is rather highly consolidated and more than a half of all computing capacities belongs to largest companies. Nevertheless, Coherent Market Insights analysts consider that in the near future deconsolidation of branch due to the appearance of new players is expected.
This segment is also interesting to us. With the support of the community on ICO, we will be able to impose market competition to the acting leaders. Just because present devices have a number of problems which are still not solved by anyone except for us.
Support of the only one cryptocurrency, the impossibility of the partial modification, high noise level, high costs of cooling and a lot of things still. Everything remains unresolved.
We plan to put on the market the multi-mining system of the new generation Papa Carlo. The equipment surpasses competitors in all key indicators: energy efficiency, productivity, customizability, the number of coins, etc.
With our development, it will be not just ASIC anymore, but the first real multi-miner, allowing to get fifteen digital currencies on the most popular algorithms SHA-256 and SCRYPT.
It is difficult to overestimate the potential of such a product. Papa Carlo is capable to take the worthy place in the market of the CIS and the whole world. It is enough to compare our technological product to the acting leader of sales - Antminer s9, to estimate all range of advantages of Papa Carlo.
Compare several key indicators of Papa Carlo and Antminer s9:
hashrate of Papa Carlo – 26 Th/s, Antminer s9 – 13,5 Th/s; Papa Carlo processors – 10 nanometers, Antminer s9 – 16 nanometers; the number of Papa Carlo chips – 210, Antminer s9 – 189; energy efficiency of Papa Carlo – 0,065 J/Gh, Antminer s9 – 0,1 J/Gh; Papa Carlo noise level – 35-45 dB, Antminer s9 – 75-80 dB. Conclusion Papa Carlo is a high-performance equipment which can compete with leaders of the market. Our Buratino Blockchain Solutions company provides its development and service.
The issue of own token will allow attracting the capital for scaling of business and distribution our multi-miner. Everyone who wishes to receive exclusive privileges from the producer at a stage of the closed sales can join our tokensale.
submitted by BuratinoBlockChainSo to u/BuratinoBlockChainSo [link] [comments]

The Concept of Bitcoin

The Concept of Bitcoin
https://preview.redd.it/5r9soz2ltq421.jpg?width=268&format=pjpg&auto=webp&s=6a89685f735b53ec1573eefe08c8646970de8124
What is Bitcoin?
Bitcoin is an experimental system of transfer and verification of property based on a network of peer to peer without any central authority.
The initial application and the main innovation of the Bitcoin network is a system of digital currency decentralized unit of account is bitcoin.
Bitcoin works with software and a protocol that allows participants to issue bitcoins and manage transactions in a collective and automatic way. As a free Protocol (open source), it also allows interoperability of software and services that use it. As a currency bitcoin is both a medium of payment and a store of value.
Bitcoin is designed to self-regulate. The limited inflation of the Bitcoin system is distributed homogeneously by computing the network power, and will be limited to 21 million divisible units up to the eighth decimal place. The functioning of the Exchange is secured by a general organization that everyone can examine, because everything is public: the basic protocols, cryptographic algorithms, programs making them operational, the data of accounts and discussions of the developers.
The possession of bitcoins is materialized by a sequence of numbers and letters that make up a virtual key allowing the expenditure of bitcoins associated with him on the registry. A person may hold several key compiled in a 'Bitcoin Wallet ', 'Keychain' web, software or hardware which allows access to the network in order to make transactions. Key to check the balance in bitcoins and public keys to receive payments. It contains also (often encrypted way) the private key associated with the public key. These private keys must remain secret, because their owner can spend bitcoins associated with them on the register. All support (keyrings) agrees to maintain the sequence of symbols constituting your keychain: paper, USB, memory stick, etc. With appropriate software, you can manage your assets on your computer or your phone.
Bitcoin on an account, to either a holder of bitcoins in has given you, for example in Exchange for property, either go through an Exchange platform that converts conventional currencies in bitcoins, is earned by participating in the operations of collective control of the currency.
The sources of Bitcoin codes have been released under an open source license MIT which allows to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software, subject to insert a copyright notice into all copies.
Bitcoin creator, Satoshi Nakamoto
What is the Mining of bitcoin?
Technical details :
During mining, your computer performs cryptographic hashes (two successive SHA256) on what is called a header block. For each new hash, mining software uses a different random number that called Nuncio. According to the content of the block and the nonce value typically used to express the current target. This number is called the difficulty of mining. The difficulty of mining is calculated by comparing how much it is difficult to generate a block compared to the first created block. This means that a difficulty of 70000 is 70000 times more effort that it took to Satoshi Nakamoto to generate the first block. Where mining was much slower and poorly optimized.
The difficulty changes each 2016 blocks. The network tries to assign the difficulty in such a way that global computing power takes exactly 14 days to generate 2016 blocks. That's why the difficulty increases along with the power of the network.
Material :
In the beginning, mining with a processor (CPU) was the only way to undermine bitcoins. (GPU) graphics cards have possibly replaced the CPU due to their nature, which allowed an increase between 50 x to 100 x in computing power by using less electricity by megahash compared to a CPU.
Although any modern GPU can be used to make the mining, the brand AMD GPU architecture has proved to be far superior to nVidia to undermine bitcoins and the ATI Radeon HD 5870 card was the most economical for a time.
For a more complete list of graphics cards and their performance, see Wiki Bitcoin: comparison of mining equipment
In the same way that transition CPU to GPU, the world of mining has evolved into the use of the Field Programmable Gate Arrays (FPGA) as a mining platform. Although FPGAs did not offer an increase of 50 x to 100 x speed of calculation as the transition from CPU to GPU, they offered a better energy efficiency.
A typical HD/s 600 graphics card consumes about 400w of power, while a typical FPGA device can offer a rate of hash of 826 MH/s to 80w of power consumption, a gain of 5 x more calculations for the same energy power. Since energy efficiency is a key factor in the profitability of mining, it was an important step for the GPU to FPGA migration for many people.
The world of the mining of bitcoin is now migrating to the Application Specific Integrated Circuit (ASIC). An ASIC is a chip designed specifically to accomplish a single task. Unlike FPGAs, an ASIC is unable to be reprogrammed for other tasks. An ASIC designed to undermine bitcoins cannot and will not do anything else than to undermine bitcoins.
The stiffness of an ASIC allows us to offer an increase of 100 x computing power while reducing power consumption compared to all other technologies. For example, a classic device to offer 60 GH/s (1 hashes equals 1000 Megahash. 1GH/s = 1000 Mh/s) while consuming 60w of electricity. Compared to the GPU, it is an increase in computing power of 100 x and a reduction of power consumption by a factor of 7.
Unlike the generations of technologies that have preceded the ASIC, ASIC is the "end of the line" when we talk about important technology change. The CPUs have been replaced by the GPUs, themselves replaced by FPGAs that were replaced by ASICs.
There is nothing that can replace the ASICs now or in the immediate future. There will be technological refinements in ASIC products, and improvements in energy efficiency, but nothing that may match increased from 50 x to 100 x the computing power or a 7 x reduction in power consumption compared with the previous technology.
Which means that the energy efficiency of an ASIC device is the only important factor of all product ASIC, since the estimated lifetime of an ASIC device is superior to the entire history of the mining of bitcoin. It is conceivable that a purchased ASIC device today is still in operation in two years if the unit still offers a profitable enough economic to keep power consumption. The profitability of mining is also determined by the value of bitcoin but in all cases, more a device has a good energy efficiency, it is profitable.
Software :
There are two ways to make mining: by yourself or as part of a team (a pool). If you are mining for yourself, you must install the Bitcoin software and configure it to JSON-RPC (see: run Bitcoin). The other option is to join a pool. There are multiple available pools. With a pool, the profit generated by any block generated by a member of the team is split between all members of the team. The advantage of joining a team is to increase the frequency and stability of earnings (this is called reduce the variance) but gains will be lower. In the end, you will earn the same amount with the two approaches. Undermine solo allows you to receive earnings huge but very infrequent, while miner with a pool can offer you small stable and steady gains.
Once you have your software configured or that you have joined a pool, the next step is to configure the mining software. The software the most populare for ASIC/FPGA/GPU currently is CGminer or a derivative designed specifically for FPGAS and ASICs, BFGMiner.
If you want a quick overview of mining without install any software, try Bitcoin Plus, a Bitcoin minor running in your browser with your CPU. It is not profitable to make serious mining, but it is a good demonstration of the principle of the mining team.
submitted by Josephbitcoin to u/Josephbitcoin [link] [comments]

Bitcoin Mining & The Beauty Of Capitalism

Authored by Valentin Schmid via The Epoch Times,
While the price of bitcoin drops, miners get more creative... and some flourish.
The bitcoin price is crashing; naysayers and doomsayers are having a field day. The demise of the dominant cryptocurrency is finally happening — or is it?
Bitcoin has been buried hundreds of times, most notably during the brutal 90 percent decline from 2013 to 2015. And yet it has always made a comeback.
Where the skeptics are correct: The second bitcoin bubble burst in December of last year and the price is down roughly 80 percent from its high of $20,000. Nobody knows whether and when it will see these lofty heights again.
As a result, millions of speculators have been burned, and big institutions haven’t showed up to bridge the gap.
This also happened on a smaller scale in 2013 after a similar 100x run-up, and it was necessary.

Time to Catch Up

What most speculators and even some serious proponents of the independent and decentralized monetary system don’t understand: Bitcoin needs these pauses to make improvements in its infrastructure.
Exchanges, which could not handle the trading volumes at the height of the frenzy and did not return customer service inquiries, can take a breather and upgrade their systems and hire capable people.
The technology itself needs to make progress and this needs time. Projects like the lightning network, a system which delivers instant bitcoin payments at very little cost and at virtually unlimited scale is now only available to expert programmers.
A higher valuation is only justified if these improvements reach the mass market.
And since we live in a world where everything financial is tightly regulated, for better or worse, this area also needs to catch up, since regulators are chronically behind the curve of technological progress.
And of course, there is bitcoin mining. The vital infrastructure behind securing the bitcoin network and processing its transactions has been concentrated in too few hands and in too few places, most notably China, which still hosts about 70 percent of the mining capacity.

The Case For Mining

Critics have always complained that bitcoin mining consumes “too much” electricity, right now about as much as the Czech Republic. In energy terms this is around 65 terawatt hours or 230,000,000 gigajoules, costing $3.3 billion dollars according to estimates by Digiconomist.
For the non-physicists among us, this is around as much as consumed by six million energy-guzzling U.S. households per year.
All those estimates are imprecise because the aggregate cannot know how much energy each of the different bitcoin miners consumes and how much that electricity costs. But they are a reasonable rough estimate.
So it’s worth exploring why mining is necessary to begin with and whether the electricity consumption is justified.
Anything and everything humans do consumes resources. The question then is always: Is it worth it? And: Who decides?
This question then leads to the next question: Is it worth having and using money? Most people would argue yes, because using money instead of barter in fact makes economic transactions faster and cheaper and thus saves resources, natural and human.

_Merchants exchange goods with the inhabitants of Tidore, Indonesia, circa 1550. Barter was supplanted by using money because it is more efficient. (Archive/Getty Images)_If we are generously inclined, we will grant bitcoin the status of a type of money or at least currency as it meets the general requirements of being recognizable, divisible, portable, durable, is accepted in exchange for other goods and services, and in this case it is even limited in supply.
So having any type of money has a price, whether it’s gold, dollar bills, or numbers on the screen of your online banking system. In the case of bitcoin, it’s the electricity and the capital for the computing equipment, as well as the human resources to run these operations.
If we think having money in general is a good idea and some people value the decentralized and independent nature of bitcoin then it would be worth paying for verifying transactions on the bitcoin network as well as keeping the network secure and sound: Up until the point where the resources consumed would outweigh the efficiency benefits. Just like most people don’t think it’s a bad idea to use credit cards and banks, which consume electricity too.
However, bitcoin is a newcomer and this is why it’s being scrutinized even more so than the old established players.

Different Money, Different Costs

How many people know how much electricity, human lives, and other resources gold mining consumes or has consumed in the course of history? What about the banking system? Branches, servers, air-conditioning, staff? What about printing dollar notes and driving them around in armored trucks?
What about the social effects of monetary mismanagement of bank and government money like inflation as well as credit deflations? Gold gets a pass here.
Most people haven’t asked that question, which is why it’s worth pointing out the only comprehensive study done on the topic in 2014. In “An Order of Magnitude” the engineer Hass McCook analyzes the different money systems and reaches mind-boggling conclusions.
The study is a bit dated and of course the aggregations are also very rough estimates, but the ball park numbers are reasonable and the methodology sound.
In fact, according to the study, bitcoin is the most economic of all the different forms of money.
Gold mining in 2014 used 475 million GJ, compared to bitcoin’s 230 million in 2018. The banking system in 2014 used 2.3 billion gigajoules.
Over 100 people per year die trying to mine gold. But mining costs more than electricity. It consumes around 300,000 liters of water per kilogram of gold mined as well as 150 kilogram (330 pounds) of cyanide and 1500 tons of waste and rubble.
The international banking system has been used in all kinds of fraudulent activity throughout history: terrorist financing, money laundering, and every other criminal activity under the sun at a cost of trillions of dollars and at an order of magnitude higher than the same transactions done with cryptocurrency and bitcoin.
And of course, while gold has a relatively stable value over time, our bank and government issued money lost about 90 percent of its purchasing power over the last century, because it can be created out of thin air. This leads to inflation and a waste of physical and human resources because it distorts the process of capital allocation.

_The dollar has lost more than 90 percent of its value since the creation of the Federal Reserve in 1913. (Source: St. Louis Fed)_This is on top of the hundreds of thousands of bank branches, millions of ATMs and employees which all consume electricity and other resources, 10 times as much electricity alone as the bitcoin network.
According to monetary philosopher Saifedean Ammous, author of “The Bitcoin Standard,” the social benefit of hard money, i.e. money that can’t be printed by government decree, cannot even be fathomed; conversely, the true costs of easy money—created by government fiat and bank credit—are difficult to calculate.
According to Ammous, bitcoin is the hardest money around, even harder than gold because its total supply is capped, whereas the gold supply keeps increasing at about 1-2 percent every year.
“Look at the era of the classical gold standard, from 1871, the end of the Franco–Prussian War, until the beginning of World War I. There’s a reason why this is known as the Golden Era, the Gilded Age, and La Belle Epoque. It was a time of unrivaled human flourishing all over the world. Economic growth was everywhere. Technology was being spread all over the world. Peace and prosperity were increasing everywhere around the world. Technological innovations were advancing.
“I think this is no coincidence. What the gold standard allowed people to do is to have a store of value that would maintain its value in the future. And that gave people a low time preference, that gave people the incentive to think of the long term, and that made people want to invest in things that would pay off over the long term … bitcoin is far closer to gold. It is a digital equivalent of gold,” he said in an interview with The Epoch Times.
Of course, contrary to the gold standard that Ammous talks about, bitcoin doesn’t have a track record of being sound money in practice. In theory it meets all the criteria, but in the real world it hasn’t been adopted widely and has been so volatile as to be unusable as a reliable store of value or as the underlying currency of a productive lending market.
The proponents argue that over time, these problems will be solved the same way gold spread itself throughout the monetary sphere replacing copper and seashells, but even Ammous concedes the process may take decades and the outcome is far from certain. Gold is the safe bet for sound money, bitcoin has potential.
There is another measure where bitcoin loses out, according to a recent study by researchers from the Oak Ridge Institute in Cincinnati, Ohio.
It is the amount of energy expended per dollar for different monetary instruments. One dollar worth of bitcoin costs 17 megajoules to mine versus five for gold and seven for platinum. But the study omits the use of cyanide, water, and other physical resources in mining physical metals.
In general, the comparisons in dollar terms go against bitcoin because it is worth relatively less, only $73 billion in total at the time of writing. An issue that could be easily fixed at a higher price, but a higher price is only justified if the infrastructure improves, adoption increases, volatility declines, and the network proves its resilience to attacks over time.
In the meantime, market participants still value the fact they can own a currency independent of the government, completely digital, easily fungible, and limited in supply, and relatively decentralized. And the market as a whole is willing to pay a premium for these factors reflected in the higher per dollar prices for mining bitcoin.

The Creativity of Bitcoin Mining

But where bitcoin mining lacks in scale, it makes up for it in creativity.
In theory—and in practice—bitcoin mining can be done anywhere where there is cheap electricity. So bitcoin mining operations can be conducted not where people are (banking) or where government is (fiat cash) or where gold is (gold mining)—it can be done everywhere where there is cheap electricity
Some miners are flocking to the heat of the Texan desert where gas is virtually available for free, thanks to another oil revolution.
Other miners go to places where there is cheap wind, water, or other renewable energy.
This is because they don’t have to build bank branches, printing presses, and government buildings, or need to put up excavators and conveyor belts to dig gold out of the ground.
All they need is internet access and a home for the computers that look like a shipping container, each one of which has around 200 specialized bitcoin mining computers in them.
“The good thing about bitcoin mining is that it doesn’t matter where on earth a transaction happens, we can verify it in our data center here. The miners are part of the decentralized philosophy of bitcoin, it’s completely independent of your location as well,” said Moritz Jäger, chief technology officer at bitcoin Mining company Northern Bitcoin AG.

Centralized Mining

But so far, this decentralization hasn’t worked out as well as it sounds in theory.
Because Chinese local governments had access to subsidized electricity, it was profitable for officials to cut deals with bitcoin mining companies and supply them with cheap electricity in exchange for jobs and cutbacks. Sometimes the prices were as low as 2 dollar cents to 4 dollar cents per kilowatt hour.
This is why the majority of bitcoin mining is still concentrated in China (around 70 percent) where it was the most profitable, but only because the Chinese central planners subsidized the price of electricity.
This set up led to the by and large unwanted result that the biggest miner of bitcoin, a company called Bitmain, is also the biggest manufacturer of specialized computing equipment for bitcoin mining. The company reported revenues of $2.8 billion for the first half of 2018.

Tourists walk on the dunes near a power plant in Xiangshawan Desert in Ordos of Inner Mongolia, in this file photo. bitcoin miners have enjoyed favorable electricity rates in places like Ordos for a long time. (Feng Li/Getty Images)Centralized mining is a problem because whenever there is one player or a conglomerate of players who control more than 50 percent of the network computing power, they could theoretically crash the network by spending the same bitcoin twice, the so called “double spending problem.“
They don’t have an incentive to do so because it would probably ruin the bitcoin price and their business, but it’s better not to have to rely on one group of people controlling an entire money system. After all, we have that exact same system with central banking and bitcoin was set up as a decentralized alternative.
So far, no player or conglomerate ever reached that 51 percent threshold, at least not since bitcoin’s very early days, but many market participants always thought Bitmain’s corner of the market is a bit too close for comfort.
This favorable environment for Chinese bitcoin mining has been changing with a crack down on local government electricity largess as well as a crackdown on cryptocurrency.
Bitcoin itself and mining bitcoin remain legal in China but cryptocurrency exchanges have been banned since late 2017.
But more needs to be done for bitcoin to become independent of the caprice of a centralized oppressive regime and local government bureaucrats.

Northern Bitcoin Case Study

Enter Northern Bitcoin AG. The company isn’t the only one which is exploring mining opportunities with renewable energies in locations other than China.
But it is special because of the extraordinary set up it has for its operations, the fact that it is listed on the stock exchange in Germany, and the opportunities for scaling it discovered.
The operations of Northern Bitcoin combine the beauties of bitcoin and capitalism in one.
Like Texas has a lot of oil and free gas and it makes sense to use the gas rather than burn it, Norway has a lot of water, especially water moving down the mountains due to rainfall and melting snow.
And it makes sense to use the power of the movement of the water, channel it through pipes into generators to create very cheap and almost unlimited electricity. Norway generates north of 95 percent of its total electricity from hydropower.

A waterfall next to a hydropowerplant near Sandane, Norway, Oct. 25, 2018. (Valentin Schmid/The Epoch Times)Capitalism does not distinguish between renewable and fossil. It uses what is the most expedient. In this case, it is clearly water in Norway, and gas in Texas.
As a side note on the beauties of real capital and the fact that capital and the environment need not be enemies, the water in one of the hydropowerplants close to the Northern Bitcoin facility is piped through a generator made in 1920 by J.M. Voith AG, a company from Heidenheim Germany.
The company was established in 1867 and is still around today. The generator was produced in 1920 and is still producing electricity today.

Excess Power

In the remote regions of Northern Norway, there aren’t that many people or industry who would use the electricity. And rather than transport it over hundreds of miles to the industrial centers of Europe, the industries of the future are moving to Norway to the source of the cheap electricity.
Of course, it is not just bitcoin mining, but other data and computing heavy operations like server farms for cloud computing that can be neatly packaged into one of those containers and shipped up north.
“The containers are beautiful. They are produced in the middle of Germany where the hardware is enabled and tested. Then we put it on a truck and send it up here. When the truck arrives on the outside we lift it on the container vehicle. Two hours after the container arrives, it’s in the container rack. And 40 hours later we enable the cooling, network, power, other systems, and it’s online,” said Mats Andersson, a spokesman for the Lefdal Mine data center in Måløy, Norway, where Northern Bitcoin has its operations. Plug and play.

A Northern Bitcoin data container inside the Lefdal Mine data center, in Måløy, Norway. (Northern Bitcoin)If the cheap electricity wasn’t enough—around 5 cents per kilowatt hour compared to 17 cents in Germany—Norway also provides the perfect storage for these data containers, which are normally racked up in open air parks above the ground.
Also here, the resource allocation is beautiful. Instead of occupying otherwise useful and beautiful parcels of land and nature, the Northern Bitcoin containers and others are stored in the old Lefdal olivine mine.
Olivine is a mineral used for steel production and looks green. Very fitting. Hence also the name of the data center: Lefdal Mine.
“We take the green mineral out and we take the green IT in,” said Andersson.

Efficiency, Efficiency

Using the old mine as storage for the data center makes the whole process even more resource efficient.
Why? So far, we’ve only been talking about bitcoin mining using a lot of energy. But what for? Before you have actually seen the process in action—and it is similar for other computing operations—you cannot imagine how bizarre it is.
Most of the electricity is used to prevent the computers from overheating. So it’s not even the processors themselves; it’s the fans which cool the computer that use the most juice.
This is where the mine helps, because it’s rather cool 160 meters (525 feet) below sea level; certainly cooler than in the Texas desert.
But it gets even better. On top of the air blow-cooling the computer, the Lefdal data center uses a fresh water system to pump through the containers in pipes.
The fans can then circulate air over the cool pipes which transfer the heat to the water. One can feel the difference when touching the different pipes.
The fresh water closed circle loop then completes the “green” or resource efficiency cycle by transferring its heat to ice cold water from the nearby Fjord.
The water is sucked in through a pipe from the Fjord, the heat gets transferred without the water being mixed, and the water flows back to the Fjord, without any impact on the environment.
To top it all off, the mine has natural physical security far better than open air data centers and is even protected from an electromagnetic pulse blast because it’s underground.

_The Nordfjord near Måløy, Norway. The Lefdal data center takes the cold water from the fjord and uses it to cool the computer inside the mine. (Valentin Schmid/The Epoch Times)_Company Dynamics

Given this superlative set up, Northern Bitcoin wants to ramp up production as fast as possible at the Lefdal mine and other similar places in Norway, which have more mountains where data centers can be housed.
At the moment, Northern Bitcoin has 15 containers with 210 mining machines each. The 15 containers produce around 5 bitcoin per day at a total cost of around $2,500 dollars at the end of November 2018 and after the difficulty of solving the math problems went down by ~17 percent.
Most of it is for electricity; the rest is for leasing the containers, renting the mine space, buying and writing off the mining computers, personnel, overhead, etc.
Even at the current relatively depressed prices of around $4000, that’s a profit of $1500 per bitcoin or $7,500 per day.
But the goal is to ramp it up to 280 containers until 2019, producing 100 bitcoin per day. Again, the company is in the sweet spot to do this.
As opposed to the beginning of the year when one could not procure a mining computer from Bitmain even if one’s life depended on it, the current bear market has made them cheap and relatively available both new and second had from miners who had to cease operations because they can’t produce at low bitcoin prices.

Northern Bitcoin containers inside the Lefdal Mine data center in Måløy, Norway. (Northern Bitcoin)What about the data shipping containers? They are manufactured by a company called Rittal who is the world market leader. So it helps that the owner of Rittal also owns 30 percent of the Lefdal mine, providing preferential access to the containers.
Northern Bitcoin said it has enough capital available for the intermediate goal of ramping up to 50 containers until the end of year but may tap the capital markets again for the next step.
The company can also take advantage of the lower German corporate tax rate because revenue is only recorded when the bitcoin are sold in Germany, not when they are mined in Norway.
Of course, every small-cap stock—especially bitcoin companies—have their peculiarities and very high risks. As an example, Northern Bitcoin’s financial statements, although public, aren’t audited.
The equipment in the Lefdal mine in Norway is real and the operations are controlled by the Lefdal personnel, but one has to rely on exclusive information from the company for financials and cost figures, so buyer beware.

Norway Powerhouse?

Northern Bitcoin wants to have 280 containers, representing around 5 percent of the network’s computing power.
But the Lefdal mine alone has a capacity to power and cool 1,500 containers in a 200 megawatt facility, once it is fully built out.
“Here you have all the space, power, and cooling that you need. … Here you can grow,” said Lefdal’s Andersson.

A mine shaft in the Lefdal Mine data center in Måløy, Norway. The whole mine will have a capacity for 1500 containers once fully built out. (Valentin Schmid/The Epoch Times)The Norwegian government was behind an initiative to bring computing power to Norway and make it one of the prime destinations for data centers at the beginning of this decade.
To that effect, the local governments own part of the utility companies which operate the power plants and own part of the Lefdal Mine and other locations. But even without notable subsidies (i.e. cash payments to companies), market players were able to figure it out, for everybody’s benefit.
The utilities win because they can sell their cheap electricity close to home. The computing companies like IBM and Northern Bitcoin win because they can get cheap electricity, storage, and security. Data center operators like Lefdal win because they can charge rent for otherwise unused and unneeded space.
However, in a recent about face, the central government in Oslo has decided to remove cryptocurrency miners from the list of companies which pay a preferential tax rate on electricity consumption.
Normally, energy intensive companies, including data centers, pay a preferential tax on electricity consumed of 0.48 øre ($0.00056 ). According to a report by Norwegian media Aftenposten, this tax will rise to 16.58 øre ($0.019) in 2019 for cryptocurrency miners exclusively.
The argument by left wing politician Lars Haltbrekken who sponsored the initiative: “Norway cannot continue to provide huge tax incentives for the most dirty form of cryptocurrency output […] [bitcoin] requires a lot of energy and generates large greenhouse gas emissions globally.”
Since Norway generates its electricity using hydro, precisely the opposite is true: No greenhouse gas emissions, or any emissions for that matter would be produced, if all cryptomining was done in Norway. As opposed to China, where mining is done with coal and with emissions.
But not only in Norway is the share of renewable and emission free energy high. According to research by Coinshares, Bitcoin’s consumes about 77.6 percent of its energy in the form of renewables globally.
However self-defeating the arguments against bitcoin mining in Norway, the political initiative is moving forward. What it means for Northern Bitcoin is not clear, as they house their containers in Lefdal’s mixed data center, which also has other clients, like IBM.
“It’s not really decided yet; there are still big efforts from IT sectors and parties who are trying to change it. If the decision is taken it might apply for pure crypto sites rather than mixed data centers, like ours,” said Lefdal’s Andersson.
Even in the worst-case scenario, it would mean an increase from ~5 cents to ~6.9 cents per kilowatt hour, or 30 percent more paid on the electricity by Northern Bitcoin, which at ~$3250 would still rank it among the most competitive producers in the world.
Coinshares estimates the average production price at $6,800 per Bitcoin at $0,05 per kilowatt hour of electricity and an 18-months depreciation schedule, but concedes that a profitable miner could “[depreciate] mining gear over 24-30 months, or [pay] less for mining gear than our estimates.”
Jäger says Northern Bitcoin depreciates the equipment over three years and has obtained very favorable prices from Bitmain, making its production much more competitive than the average despite the same cost of electricity. In addition, the natural cooling in the mine also reduces electricity costs overall.

Cheap Producer Advantage

At the moment, however, the tax could be the least of any miners worry, as the bitcoin price is in free-fall.
But what happens when the price crashes further? Suffice it to say that there was bitcoin mining when the dollar price was less than 1 cent and there will be bitcoin mining at lower prices thanks to the design of the network.
Mao Shixing, the founder of mining pool F2pool estimated 600,000 miners have shut down since the November crash in price, according to a report by Coindesk.
As it should be in a competitive system, the most energy intensive and obsolete machines are shut down first.
As with every other commodity, when the price drops, some miners will leave the market, leaving space for cheaper competitors to capture a bigger share. But with bitcoin this is a bit simpler than with copper or gold for example.
When a big copper player goes bankrupt, its competitors have to ramp up production and increase cost to increase their market share. With bitcoin, if 3,000 computers get taken off the total mining pool, they won’t be able to mine the approximately 5 bitcoin any longer.
However, because the difficulty of solving the computationally intensive cryptographic tasks of bitcoin decreases automatically when there are fewer computers engaged in the task, the other players just have to leave their machines running at the same rate for the same cost and they will split the 5 bitcoin among them.
“The moment the price goes down, our production price will go down as well,” said Jäger, a process that already happened from November to December when the difficulty decreased twice in November and the beginning of December.
This naturally favors players like Northern Bitcoin, which are producing at the lower end of the cost spectrum. They will be the ones who shut down last.
And this is a good thing. The more companies like Northern Bitcoin, and countries like Norway—even with the extra tax—the more decentralized the bitcoin system.
The more computers there are in different hands mining bitcoin, the more secure the system becomes, because it will be ever more difficult for one player to reach the 50 percent threshold to crash the system. It is this decentralized philosophy which has kept the bitcoin system running for 10 years. Whether at $1 or $20,000.
submitted by rotoreuters to zerohedge [link] [comments]

Best of Buttcoin: 2014

There's been some fantastic work done in this subreddit spreading disinformation researching, criticising, and debunking bitcoin and its sacred cows over the past year, which I would like to celebrate.
So here's some posts I saved on bitcoin-related topics. But I started saving things too late... So if you have and/or remember any great posts from the past year, dig them up and post them here.
Also, unironically, maybe someone should start a buttcoin wiki

First, three pieces of investigative journalism from Buttcoin's top minds. Here Charlie_Shrem examines the environmental impact of bitcoin mining. Key finding: For every Bitcoin transaction, 47 kilograms of CO2 is released into the atmosphere from the miners alone.
Current hash rate: 261,900,382 GH/s
Number of transactions per day: 71,331
If we assume rather conservatively that 1GH/s = 1 watt on average, then this would mean 261,900,382W is being used to power the network. We can simplify this to 261,900 kW.
Some miners can do better than 1W per 1GH/s, but many if not most do worse (i.e. 2W per 1GH/s to 10W per 1GH/s).
Going by the figure of 0.527kg CO2 / kWh found on this page,
0.527kg CO2 x 261,900 kW x 24 hours = 3,312,511.2 kg CO2 per day
Now,
3,312,511.2 kg CO2 / 71,331 transactions = 46.44 kg CO2 per transaction
For comparison, even going by this Coindesk Article, an ATM produces daily 3.162kg in CO2 emissions.
0.25kwH x 0.527kg CO2 x 24 hours = 3.162kg/day.
That means that the carbon emission for one Bitcoin transaction is equivalent to about 15 ATMs processing perhaps hundreds or thousands of transactions in a day combined.

Earlier this month Frankeh abruptly interrupted remittance-focused annular onanism by issuing a challenge: to find a single instance where bitcoin works out cheaper than a fiat alternative. In case you need to ask... Nope.
Right, there's a bunch of circlejerking happening in /Bitcoin right now so I think it's time to cut through the bullshit one way or another.
Country to send money to.
The biggest remittance markets are China, Indian and the Philippines.
I believe that since /Bitcoin often gives the Philippines as an example of successful Bitcoin remittance then it is the perfect country to use in our challenge.
Country to send money from.
According to this wikipedia article Malaysia and Canada have the biggest expat Filipino communities. 900,000 and 500,000.
So I think we should do the calculations based on both countries.
The methodology
Most people are not paid in Bitcoin. This is a fact. So for our calculation you must start with fiat, and end in fiat. We're not doing these calculations based on future utility of Bitcoin (No, neo. I'm saying...), we're doing them on the current utility.
We will also be doing a bank to bank remittance, because that is nice an constant. We don't need to take into account pick up locations Bitcoin remittance allows and pick up locations normal remittance allows. They'll vary too much.
Time will also not be taken into account, as time doesn't actually matter when it comes to remittance. Now, Bitcoiners might shout about this particular rule but let me explain my logic behind this.
A foreign worker gets paid every Friday. They start the remittance process on the Friday and regardless of if it takes 0, 3, or 5 days their family back in their home country just needs to base their life around money coming in on remitters pay day + 0, 3, or 5 days. Time taken is of no real value when it comes to remittance. All that matters is that it consistently arrives on day x.
As such, any remittance services that take over 5 working days are to be ignored for the sake of this challenge.
The amount
The amount is going to be 25% of the average wage in each of the countries. This isn't extremely scientific because it doesn't particularly need to be, and the figures are hard to come by.
So 1826.75 MYR for Malaysia and 1,398 CAD for Canada.
Don't bother complaining about these, they're just examples.
Few more ground rules
  • We're going to be going from bank/bank card to bank regardless, so we're not interested in banking fees on either side. They will be the same regardless of Bitcoin or WU (for example)
  • It must be from local fiat to foreign fiat.. You can't palm off the conversion fee to the receivers bank to keep fees down.
  • Any remittance service can be used, as long as Bitcoin is involved for people fighting the Bitcoin corner and Bitcoin isn't used for people fighting the WU (or similar) corner.
  • You must go through the process and document all the fees for each. Fees to look out for are currency spreads, transaction fees on exchanges, etc

Finally a recent thread, but commendable all the same. Hodldown presents some research leading to facts overturning years of knowledge in the bitcoin wiki. Even us shills have been laughing at bitcoin's pathetic capability of 7 transactions per second. It turns out, we were out by at least a factor of 2:
The average number of transactions per block right now is: 665 transactions
The average block size is 0.372731752748842mb.
That means the average transaction is 0.00056049887mb. Which means 1mb of transactions (the limit) is 1784 transactions
Assuming a 10 minute block (a whole other can of worms) that means there is 10*60 seconds.
1784/600 isn't 7. It's a 2.97.
Bitcoin at a technical level can not handle even 3 transactions per second.

In one of the frequent bitcoin user invasions, PayingWithActualMone outlines why the "solution in search of a problem" isn't that great of a solution to much either.
On the transaction side: the Bitcoin community seems convinced that banks are ripping them off (which imo they are not), and that it can be fixed by applying some magicsauce over a transaction that is facilitated by banks regardless. So far in practice I haven't seen any evidence of the 'fast' 'cheap' and 'easy' transactions, like most recently with Mollie. They usually compare the fees of BTC>BTC transactions to the fees of Chase Mastercard > a fucking nomad in the Sahara (with consumer protection) to prove their point. The community also seems convinced that the entire world banks the way America does, not realizing that in Europe banking has been dirt cheap for years.
And the security... oh boy the security. Half the population can't manage to go without a virus for one year (not an actual statistic), and now you expect them to secure their coins? People are dumb as shit, and software is always one step behind the exploits. We could of course create Bitcoin banks, but then there isn't much left of the original idea.
On the 'intrinsic value' side: what the hell is wrong with people. If the underlying product is no good in any aspect, why is it worth much? Right now (that's like 5 years after introduction mind you) BTC is used in 3 types of transactions: Silk Road, SatoshiDice & extremely questionable transactions. It does its job well in that aspect, and that's all it will ever be. The community just turned the technology into a giant ponzi, and they don't care as long as they get paid. The people actually doing business in Bitcoin probably don't care about the price that much.

Someone who deleted their account, on the argument that merchant adoption is a cause of the price drop:
That's just an excuse butters use for the price going down.
There's no real difference between selling bitcoin for fiat and exchanging bitcoin for goods and services. Both are a form of sale of bitcoin, an expression of preference for something other than bitcoin.
If on balance, there's more flow of bitcoin into fiat, goods or services than there is a corresponding opposing flow, then it is simply the market expressing the view that bitcoin is overvalued. Therefore, the reduction in the value of bitcoin (as valued in fiat) is a sincere expression of the market's view of what the correct price for bitcoin is.
Think of an example: A true believer has 20 BTC. He exchanges 10 BTC with Dell for a whizzy server. Dell (or another intermediary) sell the 10 BTC at an exchange in return for fiat. The market price of BTC goes down.
The price goes down, simply because a true believer cut his bitcoin holding, he got out. He thought having a server now was worth more to him than 10 tickets to the moon. Which is an expression of a negative view of the future value of bitcoin. A simple "aggressive" sale in trading parlance.

A late entry from jstolfi. A concise description of the Satoshi/Bitcoin origin story .
My understanding is that "Satoshi" had been trying to solve the technical problem of convincing a bunch of anonymous, volunteers to maintain and protect a distributed ledger, with no central authority.
He thought that he had a solution, in the form of a protocol that included PoW, miner rewards, longest chain, etc. The solution seemed to work on paper; but, as a good scientist, he started an experiment in order to check whether it would also work in practice.
For that experiment to be meaningful, it would have been enough if the coin was mined for several years only by a few hundred computer nerds, with the cooperation of some friendly pizza places and bars.
The US$ price of the coin was not important to the experiment, and it was never meant to be a weapon for libertarians, a way to buy drugs or evade taxes, a competitor to credit cards or Western Union, a sound investment or item for day-trading. All those "goals" were tacked onto it afterwards.

bob237 comments on the the absurdity of coinbase and it's touted 'rebuy' scheme,
It gets even better than that, actually. A lot of bitcoiners don't like 'losing' bitcoin, and so coinbase added a popular 'repurchase bitcoin' feature that automatically debits your bank account to replenish the BTC in your coinbase account after a purchase.
The ultimate result then is that you pay coinbase fiat, they take their cut, and then send that fiat on to the merchant. All 'bitcoins' used in the middle of the transaction are not really bitcoins, but just abstractions in coinbase's internal [off-chain] accounting system.
It's a crap version of paypal, no consumer protection and a ton of fees hidden in the spread when you buy your chuck-e-cheese tokens from them.

saigonsquare explains why ubiquitous tipping isn't the the killer app that it has been touted as, and why bitcoiners may fail to grasp this
Most people understand that there are different sorts of interaction. There are purely social interactions, there are quid-pro-quo interactions, and there are market interactions. Mixing those up causes embarrassment and insult. I wouldn't try to pay my mother-in-law ten bucks for cooking Christmas dinner, and I certainly wouldn't try to pay her ten cents. If a waiter suggests I try the raspberry tart, I won't get away with offering to bake him some cookies next week in compensation; if an office mate suggests I have a slice of her birthday cake, I'll be insulted if she brings me a bill for it. If I spend an hour helping my friend move apartments and he thanks me, I'm fine; we're friends helping each other out. If he pays me two bucks, I'm insulted; he's canceled the social nature of the interaction and instead simply bought my labor for a fraction of its going rate. I'm up two bucks but down a friend.
Ancapspergers, not particularly understanding any sort of interaction more complicated than buying a cheeseburger at Wendy's, assume that all interactions are a form of market transaction, and set pricing accordingly. Normal humans get offended by a penny shaving, because it cancels the social nature of the interaction and turns it into a market transaction--and then informs the recipient that his contribution to the transaction was of negligible value.
submitted by occasionallyrude to Buttcoin [link] [comments]

Need help choosing hardware/what to mine with just 200$ or less.

Hello guys, I am digging deep on the internet to try and find this question but any help is really appreciated.
Noticing how my country is getting really awful in terms of currency exchange (Venezuela), getting USD is pretty valuable in here so I'm considering to mine for profit. I am really new on this, and I've just heard the bitcoin basics and the mining basics a couple of weeks ago.
I only have available around 200$ to invest on an ASIC miner if it's really worth it, seeing that my 'calculator' is really awful to use as a miner (Gave it a try, and I could only get 80 H/s tops). The question is: What to mine? What can be truly be spent for a profit?
I know miners can break even but here's the thing: Watts doesn't matter. Here where I live the electricity bill is around 0.0003 kWh, so no need to go green.
My choices are either spend 3 AntMiner U3 (45$ each, 63 GH/s SHA-256), or 1 single ZeusMiner Cyclone (195$, 22MH/s, Scrypt), but I'm all ears if there are other more profitable choices.
Any suggestion is appreciated, thank you.
submitted by Ronaldo1024 to CryptoCurrency [link] [comments]

What is the multisignature protocol - this explain why INX will be an anonymous coin as Monero!

What is the multisignature protocol - this explain why INX will be an anonymous coin as Monero!
What is the multisignature protocol - this explain why INX will be an anonymous coin as Monero!
https://preview.redd.it/gb8jjiva0yg11.jpg?width=800&format=pjpg&auto=webp&s=bc0573826f48f45c3507d271f1fe85160592034f
Although Monero added the support for the multisignature protocol several months ago, there is still a certain lack of information online on how this technology works, so we would like to fill this gap first of all. Since the process of creating a multisignature transaction is rather complicated, we decided to focus only on its most vital aspects, including the processes of creating a wallet and exchanging keys, which we believe is enough to understand the strengths and weaknesses of this technology.
We tried to make the article more readable by ditching off most of the formulas and replacing them with schemes and illustrations, so we hope it will be useful not only to experienced engineers but to beginners as well.
On the Monero blockchain, the multisignature-related features is primarily used to allow for wallets, that have multiple users — which isn’t new, as pretty much the same solution was previously implemented by other digital currencies such as Bitcoin and Ethereum. In a nutshell, it allows for joint ownership of tokens which are being stored in a specific wallet. Joint ownership implies each participant has full rights to the entire amount, so there’s a reasonable limitation on its disposal: every transaction must be authorized by a certain share of participants, which is set out when the wallet is created.
The total number of owners and the approval threshold define the so-called “scheme” of a wallet. For instance, a 3/3 multisig wallet has three owners who have to unanimously approve every transaction, while in case of a 2/3 wallet each owner needs just another vote to transfer funds.
Cryptography
As is the case with most digital currencies, the Monero blockchain relies on elliptical-curve cryptography (learn more on Wikipedia). Simply put, this encryption system is valued for its relative cryptographic strength, smaller key size, and faster execution compared to many of its peers.
Every Monero wallet employs two sets of private and public cryptographic keys, each set being comprised of a “spend key” and a “view key”. Taken together, the public view key and the public spend key of a given wallet make up the address, which is used to receive funds. The same way, adding a private view key to a public spend key will create a tracking key, which your counterparts may use to track the funds being sent to your wallet (but never the other way around, so your privacy remains safe).
As you have probably guessed, the full access to a wallet is secured by a combination of its private spend and private view keys, so your private spend key must be kept in secret.
For the sake of brevity, from here on we will use uppercase letters for public keys (i.e. ‘B’ for ‘public spend key’), and lowercase letters for private keys (i.e. ‘b’ for ‘private spend key’). To help you understand the notation used below, let’s take a look at a short formula showing how a public key is derived from a private key:
https://preview.redd.it/7p0jh0dc0yg11.png?width=228&format=png&auto=webp&s=4d66dd129d33908cc6ac1653cc2133789a58f62a
where G is a fixed point on the elliptic curve. The multiplication of a private (scalar) key by G yields a public key, which is also a point on the same curve.Multisignature in Monero
The idea behind the multisig technology is pretty straightforward: having each participant to keep only a part of a wallet’s private spend key, so that transferring funds would require approval by a number of other participants.
It’s nearly impossible for any given participant to gain control over the entire private spend key, while all of them have their own unique public spend keys, as well as copies of both private and public view keys, allowing each participant to monitor the incoming funds.
Creating a multisig wallet in Monero
Currently, the Monero software supports only N/N and N-1/N schemes. To set up an N/N multisig wallet, the users need to complete a single round of calculations, with just one additional step required for the N-1/N scheme. The process of creating a 2/2 wallet is shown in Figure 1.
Figure 1. Creating a 2/2 multisig wallet
https://preview.redd.it/x930tzti0yg11.png?width=800&format=png&auto=webp&s=c20d9b6ceca1be28f41dd62931f6ad3bcfafc947
Firstly, the participants share all their private view and public spend keys, and then calculate their respective sums. The sum of the private view keys becomes the private view key for the new wallet, with its public view key being derived from the private one. Then, the public spent key is calculated the same way. If the N/N scheme was chosen, that’s all of it. The wallet is now created.
If users opt for the N-1/N scheme, they would still have to share their private view and public spend keys with each other, but then each participant must multiply all public spend keys received by their own private spend key. Thus, a new set of private spend keys is created, which is called “multisignature keys,” as shown in Figure 2.Figure 2. Creating a 2/3 multisig wallet
https://preview.redd.it/ay5ckzhk0yg11.png?width=470&format=png&auto=webp&s=2c5b7c973221a583fd00a9f5803c9f9775608c0f
📷
You might have noticed that in the figure above, the keys of the same color have the same value. This is because such multisignature keys have one important property expressed by the following equality:
https://preview.redd.it/dprohjoq0yg11.png?width=497&format=png&auto=webp&s=bf63932e61cefcfc581c5c4a177ba8e9e880c4f1
📷
To put it simply, when multiplying a private key by a public key, the indices can be moved as one would like without affecting the result (this is, by the way, the very property of such products that underlies the elliptic curve Diffie–Hellman key exchange protocol). This means that every multisig key is shared between exactly two participants.
To calculate a public spend key, which must be the same for all participants, each of them derives a public key from their respective multisignature key, and shares the result with others. Then the public spend key is calculated by summing the distinct values of all public multisig keys.
Now the participants only have to calculate a view key, which is done the same way as for a 2/2 wallet.
So, now that the wallet is created, let’s move on to looking at how it could be used.
Monero transactions
To explain how to launch a multisig transaction, let’s briefly consider how Monero deals with funds transfer in general. In a very simplified form (not taking into account ring signatures and RingCT), it works like this:
Figure 3. Simplified representation of a transaction
https://preview.redd.it/1pd1zu4s0yg11.png?width=800&format=png&auto=webp&s=02b97a4860389c20f311cb0f5ffd3f24ba594bc5
📷
On the right are the transaction outputs, or the money which the transaction generates, and on the left are the inputs, or the money being destroyed when said transaction is complete.
So, when Alice wants to send 1 XMR to Bob, she takes 1 XMR, plus the necessary commission, from her unspent outputs, puts it to her inputs, calculates a key image for each of them, and finally generates outputs for 1 XMR and an output key for each of them.
To complete the transaction, Bob uses his private view and public spend keys to restore the output keys for each output generated by Alice, and if there’s a match between the restored and the incoming keys, he will consider this output as intended for him.
From the network’s point of view, a multisig transaction isn’t in any sense different, although it’s a little bit more complicated to initiate. It’s usually done in several steps:
Participants exchange partial key images for all known outputs; Participants re-synchronize their wallets in order to learn its accurate balance taking into account the key images; The sender prepares the transaction, signs it, and sends it over to one of his counterparts; Each subsequent participant adds its own part of the RingCT signature; The last signer completes the creation of RingCT. 
Generating key images and sharing outputs
When scanning the blockchain (i.e. during the synchronization), a wallet is unable to determine whether some of the inputs are targeting its outputs, since it does not have the data to calculate key images for them, so it’s safe to say that it only accounts for incoming transactions.
In order to run a transaction correctly, a user needs to restore the key image for each of the outputs, then synchronize with the blockchain to determine which outputs have been spent, and then proceed to generating the transaction. In Figure 4, the process of restoring key images is shown as in case of a 2/3 wallet.Figure 4. Restoring key images as in case of a 2/3 wallet
📷
https://preview.redd.it/w6a5v08t0yg11.png?width=800&format=png&auto=webp&s=37570fc67117ab8de403d6aae0c11955e4aad915
Again, to put it simply, the key image for each output is calculated by summing the distinct values of all partial key images. As can be seen from the figure above, this can be done by any two participants out of three, and, most importantly, their private keys remain undisclosed during the transaction, making it impossible for a third party to restore the complete spend key and to seize control over their funds.
With this data, the initiating party can finalize the transaction, which is then sent to all confirmed participants to generate a Ring CT signature. Then, at the final stage, the transaction is signed and broadcast to the network.
Data exchange automation
The above are procedures for exchanging key parts and key images that need to be performed either once, or after each transaction is sent. In the current release of the Monero Core Wallet, these procedures are supposed to be performed manually by exchanging the necessary data on the secure communication channels (i.e. exporting the necessary data from the wallet and sending them via messengers or otherwise).
Here is an example of the procedures required to create a 2/3 wallet and sign a transaction. Each participant performs the following commands using the monero-wallet-cli utility:
MultisigV1baCWviNomMXe271W8HW4imh8SsnNEWP2bCswQfoB9MGzNZ8FUG3e8UCNm5toKQzSQH2e8rUWUCGazaCcvej1ToCQYBMovJZYaYiYWQvzsvyWruXycZdVDSsyugjEzwQNK3FUEkug2LXiH91NmekGb7kp9gK9kuoxDDhGn1nLKXUpnXR5
Send this multisig info to all other participants, then use make_multisig threshold info1 [info2…] with others’ multisig info.
This includes the PRIVATE view key, so needs to be disclosed only to that multisig wallet’s participants:
wallet 9uKCgo: make_multisig 2 MultisigV1XQugvU4JwcwTQbKdH5qGFnavxUX54wGxNis2iN6zoLD94DahnXbyNxH1NQBp2rYRFFJCT2uiJbssHLJYEAb8X1tS5UCqTXYu3FkgRNSZt5mRNgE58iXZHPj839Pbm3ozGcXmRT6GcRMMxMjRonfYKpnPq1UyZSMN7Qr9AYin1gYyoJSh MultisigV1HVqTW8P4UNWUE8QfBaEdwDWJuXBWEPnTrKqVJiUudGG14cHREk9TKmeR9xzSs4wf4jd22mV94C2ehSViApawnpp2SpRqp19eKXLHz2JmNp7eGR6TJMt4VsDTqANRwb1FtD9weef342f5KXDRZK7iQT1MTubyHhEcFyV5aLCjjQ8owMkH
Another step is needed
MultisigxV1PQwytRuYGkB6UEVJ7v2S7q492cwNTdwySXyasToAuQQq73TvM1rBrog5bcYz5w2P6Z4jwKtzrHr7shRGo5mAShvLVbYtBdQNhQsizMb51K7iaWQB4te5mQaiB1cok84CbvA9WKnVpTJGyb7SbS7NwAgmpEhU812RTdzrdHp5sD41duYtRNW6qna5mTMYmtTjAEdKpKCvM6EwhV4ncWscpvoBfyYP
Send this multisig info to all other participants, then use finalize_multisig info1 [info2…] with others’ multisig info:
wallet 9uKCgo: finalize_multisig MultisigxV1PdeMJo5rxcWTXDJ7rbyuacBseugsn2djZKKEdwvFYVmz73TvM1rBrog5bcYz5w2P6Z4jwKtzrHr7shRGo5mAShvLUxykuq5gho7gGQBCEa3JmBaY7rNHqqUaCUs1WWQi9tojZTMmCJJ4evwJzcXEDqcAd7ShwxsJtJtXdiATs54BbBfyCbwXbnDRKAtagJF36z74KJA58NgEmnHv23ZQeePCoacM MultisigxV1RTwyE53FjKPQaAn4ZMWM5hc8C92eJndpyKby4L9HpF2TUxykuq5gho7gGQBCEa3JmBaY7rNHqqUaCUs1WWQi9tojVbYtBdQNhQsizMb51K7iaWQB4te5mQaiB1cok84CbvA928U2yJFK86jNxtMopxHkcnYjjeYfp8TAB53Y1CukBiHfL2M4EztDALXLReXjJxkMry65Jw6vVePJp2T5CW8T8QE5
Before sending a transaction, all parties must exchange partial key images:
wallet 9uKCgo: export_multisig_info ki1
Multisig info exported to ki1.
wallet 9uKCgo: import_multisig_info ki2 ki3
Height 1103873, txid f7e648915287fafca1dc67eb26267e09f92bba7ab7fd52a12600c3e6440db0eb, 2.000000000000, idx 0/0
Height 1103882, txid 2e3a5591c741c0943a47a2bcbd1ec26493158088c88308bcbfc97423ea95c49, 0.009000000000, idx 0/0
Multisig info imported
Then the wallet is re-synchronized to account for the complete keys. After having received data on outgoing payments, one of the participants can set up the transaction:
wallet 9uKCgo: transfer 9vUnTucAioDHD4ZqrFHXAgfLqrsC3LkZ6JFr5axBLhDiFMaHuEk33aqXimoZEMtQh5ibdYxcNSBw2hBZLAsCnuw4B4rBeZX 1
No payment id is included with this transaction. Is this okay? (Y/Yes/N/No): Y
There is currently a 2 block backlog at that fee level. Is this okay? (Y/Yes/N/No)Y
Transaction 1/1:
Spending from address index 0
Sending 1.000000000000. The transaction fee is 0.012000000000
Is this okay? (Y/Yes/N/No): Y
Unsigned transaction(s) successfully written to file: multisig_monero_tx
Then the generated file is transferred to another participant to be signed and broadcast to the network:
[wallet 9twQxU]: sign_multisig multisig_monero_tx
Loaded 1 transactions, for 1.031762770000, fee 0.012000000000, sending 1.000000000000 to 9vUnTucAioDHD4ZqrFHXAgfLqrsC3LkZ6JFr5axBLhDiFMaHuEk33aqXimoZEMtQh5ibdYxcNSBw2hBZLAsCnuw4B4rBeZX, 0.019762770000 change to 9uKCgopHzXrQLnph1ZNFQgdxZZyGhKRLfaNv7EEgWc1f3LQPSZR7BP4ZZn4oH7kAbX3kCd4oDYHg6hE541rQTKtHB7ufnmk, with min ring size 7, no payment ID. Is this okay? (Y/Yes/N/No): Y
Transaction successfully signed to file multisig_monero_tx, txid 1d28af64bc78d05b625c4f7af7c321d4c8943c4c2692f57aa53e303387f40db6
[wallet 9twQxU]: submit_multisig multisig_monero_tx
Loaded 1 transactions, for 1.031762770000, fee 0.012000000000, sending 1.000000000000 to 9vUnTucAioDHD4ZqrFHXAgfLqrsC3LkZ6JFr5axBLhDiFMaHuEk33aqXimoZEMtQh5ibdYxcNSBw2hBZLAsCnuw4B4rBeZX, 0.019762770000 change to 9uKCgopHzXrQLnph1ZNFQgdxZZyGhKRLfaNv7EEgWc1f3LQPSZR7BP4ZZn4oH7kAbX3kCd4oDYHg6hE541rQTKtHB7ufnmk, with min ring size 7, no payment ID. Is this okay? (Y/Yes/N/No): Y
Transaction successfully submitted, transaction <1d28af64bc78d05b625c4f7af7c321d4c8943c4c2692f57aa53e303387f40db6>
You can check its status by using the show_transfers command.
Obviously, with a great desire to use multisig wallets, it’s possible, but this approach is unlikely to suit beginners or mobile users.
Therefore, we are developing our own solution that would allow us to automate the exchange of such data without violating the privacy of the parties and the security of transactions, making multisig applications on Monero accessible to more people. Our solution is being designed to support both standard and multisig wallets, and is being run on an open server that provides the exchange and transfer of data to corresponding wallets.
More information on our contribution to Monero can be found at https://exan.tech/en/projects/monero/, as well as at the project’s page at https://wallet.exan.tech.
Resume
Currently, only a limited set of signature schemes is supported, but the developers plan to extend the list to allow for arbitrary values such as 2/5, etc. The only supported way to exchange necessary data is rather inconvenient, but thanks to the Monero’s open ecosystem the community puts high hopes on third-party solutions being developed to improve the situation.
Later in this series, we will talk about other aspects of the Monero blockchain, such as RingCT and ring signatures, wallets architecture and the libwallet library, as well as the network’s future prospects.
Please ask your questions in the comment section, suggest topics for new cryptocurrency-related articles, and subscribe to our blog to stay abreast of our upcoming events and valuable publications.
From : https://hackernoon.com/monero-multisignatures-explained-46b247b098a7
#InziderX #Exchange #ico https://inziderx.io/
submitted by InziderX to u/InziderX [link] [comments]

All about hashflare.io bitcoin mining

I have been mining BTC in hashflare for about 13 months. I have already received 50 times my initial investment of small 100$ to 5000$, giving the fact that I did not reinvest and the BTC prices have risen tremendously.
I have again started mining with hash flare and I am quite sure that since the price of BTC is expected to rise to 50k - 100k in 2018, my initial investment of 600$ this time will give me close to 10k-20k$ with the investment strategy I have chosen.
If you like to join BTC mining with a minimal investment and get returns in thousands of $s then you can join via my affiliate link http://bit.ly/2maXzM0 (small commission without effecting your investment) and I will give you my tips to grow your money exponentially.
What is HashFlare?
HashFlare is a department of HashCoins, a company that develops software for cloud mining and maintains equipment in datacenters.
Hashflare provides cloud mining contracts to the buyers for 365 days. The mining starts immediately after the purchase and the output can be seen after 24hrs.
What all cryptocurrencies can I mine with Hashflare service?
HashFlare provides cloud mining on the following algorithms:
SHA-256, which is used to mine Bitcoins;
Scrypt, which is used to mine Litecoins*;
ETHASH, which is used to mine Ethereum;
X11, which is used to mine DASH.
*payouts are provided in BTC using the current exchange rate taken from cryprocurrency market.
MY PERSONAL OPINION - AS PER THE CURRENT MINING TRENDS AND PROFITABILITY, IT IS ADVISABLE TO MINE BTC.
How long does the contract last?
SHA-256 and SCRYPT contracts last 1 year(365 days) and are subject to maintenance and electricity fees (MEF).
ETHASH, EQUIHASH and DASH contracts last for 1 year (365 days) and are not subject to any fees.
How to calculate estimated profit using hashrate?
Profit is calculated via the deduction of expensesfrom income.
The income consists of daily payouts which size depends on the hashrate. In order to calculate an estimated income using the hashrate you will need to include it in one of the calculators below (set all Power values to zero):
1. Bitcoin - for SHA-256
2. Litecoin - for Scrypt
3. Ethereum - for ETHASH (set all Power values to zero)
4. DASH - for X11 (set all Power values to zero)
5. Zcash - for EQUIHASH (set all Power values to zero)
Next, deduct the maintenance + electricity fee of 0.0035 USD per 10 GH/s of SHA-256 and 0.005 USD per 1 MH/s of Scrypt from the income. ETHASH, X11 and EQUIHASH contracts are not subject to any fees.
The sum you end up with is your estimated profit. Join at http://bit.ly/2maXzM0
submitted by letsolioforlife to u/letsolioforlife [link] [comments]

(({{{Bitcoin$Free}})) Best. Cryptocurrency. Trading. Platform.

[+#Bitcoin$Free}}))Best Cryptocurrency Trading Platform THE BITCOIN MANIA Trading on crypto currencies, is the new trend taking over of the digital money market. Bitcoin, the crypto currency is breaking records with 4,500% growth in the last year, proving that the future is in crypto currencies. BITCOIN TRAINING DAY Join our risk free "Bitcoin Club Marathon", where you will get a demo account to perfect your trading skills. Here you receive an opportunity to learn from others without risking your money. Crypto Signals Crypto currencies exchange market could be highly fluctuant, presenting numerous opportunities 24/7. The club provides you Signals system that will send you alerts whenever an opportunity arises.
bitcoin,.,price,.,bitcoin,.,mining,.,bitcoin,.,to gbp,.,bitcoin,.,news,.,bitcoin,.,wallet,.,bitcoin,.,to usd,.,bitcoin,.,price chart,.,bitcoin,.,exchange rate,.,bitcoin,.,cash,.,bitcoin,.,price history,.,bitcoin,.,bitcoin,.,atm,.,bitcoin,.,account,.,bitcoin,.,atm london,.,bitcoin,.,alternative,.,bitcoin,.,address,.,bitcoin,.,atm near me,.,bitcoin,.,august 1st,.,bitcoin,.,atm uk,.,bitcoin,.,asic,.,bitcoin,.,app,.,a,.,bitcoin,.,to naira,.,a,.,bitcoin,.,miner,.,a,.,bitcoin,.,address,.,a,.,bitcoin,.,worth,.,a,.,bitcoin,.,governance network,.,a,.,bitcoin,.,atm,.,a,.,bitcoin,.,faucet,.,a,.,bitcoin,.,transaction,.,a,.,bitcoin,.,wallet,.,a,.,bitcoin,.,to a dollar,.,bitcoin,.,buy,.,bitcoin,.,blockchain,.,bitcoin,.,bubble,.,bitcoin,.,buy uk,.,bitcoin,.,broker,.,bitcoin,.,block explorer,.,bitcoin,.,billionaire,.,bitcoin,.,bank,.,bitcoin,.,blockchain size,.,bitcoin,.,bbc,.,bitcoin,.,b font,.,bitcoin,.,miner.b,.,bitcoin,.,b symbol,.,mel b,.,bitcoin,.,buy,.,bitcoin,.,capital b,.,bitcoin,.,b-eleven,.,bitcoin,.,plan b,.,bitcoin,.,b-wallet,.,bitcoin,.,b&h,.,bitcoin,.,bitcoin,.,chart,.,bitcoin,.,converter,.,bitcoin,.,core,.,bitcoin,.,crash,.,bitcoin,.,currency,.,bitcoin,.,current value,.,bitcoin,.,calculator uk,.,bitcoin,.,creator,.,bitcoin,.,casino,.,c,.,bitcoin,.,miner,.,c,.,bitcoin,.,library,.,c't,.,bitcoin,.,c,.,bitcoin,.,wallet,.,bitcoin,.,ac id,.,bitcoin,.,c sharp,.,bitcoin,.,miner-c pup,.,bitcointalk c-cex,.,bitcoin,.,c==,.,bitcoin,.,debit card,.,bitcoin,.,difficulty,.,bitcoin,.,dollar,.,bitcoin,.,debit card uk,.,bitcoin,.,dark,.,bitcoin,.,documentary,.,bitcoin,.,drop,.,bitcoin,.,define,.,bitcoin,.,dark web,.,bitcoin,.,download,.,bitcoin.d,.,bitcoin,.,xt d,.,bitcoind backup,.,d-wave,.,bitcoin,.,mining,.,the d,.,bitcoin,.,atm,.,d'angelo,.,bitcoin,.,system d,.,bitcoin,.,init.d,.,bitcoind,.,d las vegas,.,bitcoin,.,/etc/init.d/bitcoind,.,bitcoin,.,exchange,.,bitcoin,.,explained,.,bitcoin,.,etf,.,bitcoin,.,exchange uk,.,bitcoin,.,ethereum,.,bitcoin,.,explorer,.,bitcoin,.,exchange rate uk,.,bitcoin,.,euro,.,bitcoin,.,exchange rate chart,.,bitcoin,.,exchange rate history,.,bitcoin,.,e wallet,.,,.,bitcoin,.,e.g. crossword,.,bitcoin,.,e.g. crossword clue,.,bitcoin,.,e commerce,.,bitcoin,.,e-currency,.,bitcoin,.,e money,.,bitcoin,.,e card,.,bitcoin,.,ebook,.,bitcoin,.,e-voucher,.,bitcoin,.,e pill,.,bitcoin,.,fork,.,bitcoin,.,forecast,.,bitcoin,.,faucet,.,bitcoin,.,forum,.,bitcoin,.,for dummies,.,bitcoin,.,farm,.,bitcoin,.,fees,.,bitcoin,.,founder,.,bitcoin,.,future,.,bitcoin,.,fund,.,f#,.,bitcoin,.,price of,.,bitcoin,.,brother john f,.,bitcoin,.,bh f,.,bitcoin,.,msil,.,bitcoin,.,miner-f,.,bitcoin,.,gbp,.,bitcoin,.,graph,.,bitcoin,.,growth,.,bitcoin,.,generator,.,bitcoin,.,gambling,.,bitcoin,.,github,.,bitcoin,.,games,.,bitcoin,.,guide,.,bitcoin,.,google finance,.,bitcoin,.,global capital,.,g,.,bitcoin,.,price,.,g,.,bitcoin,.,charts,.,g,.,bitcoin,.,value,.,g,.,bitcoin,.,mining calculator,.,bitcoin,.,guiminer,.,ghash,.,bitcoin,.,g coin,.,bitcointalk,.,g cash to,.,bitcoin,.,bitcoin,.,miner.g,.,bitcoin,.,hard fork,.,bitcoin,.,hardware wallet,.,bitcoin,.,history,.,bitcoin,.,historical price,.,bitcoin,.,hack,.,bitcoin,.,how to buy,.,bitcoin,.,halving,.,bitcoin,.,how it works,.,bitcoin,.,hashrate,.,bitcoin,.,hardware wallet uk,.,bitcoin,.,h/s,.,c&h,.,bitcoin,.,main.h,.,bitcoin,.,hash.h,.,bitcoin,.,coins.h,.,bitcoin,.,best b#$h -,.,bitcoin,.,best b#$h -,.,bitcoin,.,lyrics,.,h&r block,.,bitcoin,.,h-not-zero,.,bitcoin,.,bitcoin,.,investment,.,bitcoin,.,in gbp,.,bitcoin,.,investment trust,.,bitcoin,.,index,.,bitcoin,.,inventor,.,bitcoin,.,in usd,.,bitcoin,.,india,.,bitcoin,.,inflation,.,bitcoin,.,in dollars,.,bitcoin,.,investment uk,.,i,.,bitcoin,.,in usd,.,i,.,bitcoin,.,in inr,.,i,.,bitcoin,.,to pkr,.,i,.,bitcoin,.,to dollar,.,i,.,bitcoin,.,to naira,.,i,.,bitcoin,.,in rs,.,i,.,bitcoin,.,= satoshi,.,i,.,bitcoin,.,is equal to,.,i,.,bitcoin,.,berapa rupiah,.,i,.,bitcoin,.,in inr in 2009,.,bitcoin,.,japan,.,bitcoin,.,jobs,.,bitcoin,.,japan legal,.,bitcoin,.,jesus,.,bitcoin,.,jobs london,.,bitcoin,.,jobs uk,.,bitcoin,.,july 2017,.,bitcoin,.,jokes,.,bitcoin,.,june 2017,.,bitcoin,.,jihan,.,bitcoin,.,j,.,bitcoinj tutorial,.,bitcoinj micropayments,.,mary j,.,bitcoin,.,belle,.,mary j,.,bitcointalk,.,j maurice,.,bitcoin,.,mary j,.,bitcoin,.,j p morgan,.,bitcoin,.,,.,bitcoin,.,j vty,.,обменник,.,bitcoin,.,bitcoin,.,kurs,.,bitcoin,.,kraken,.,bitcoin,.,koers,.,bitcoin,.,knots,.,bitcoin,.,key,.,bitcoin,.,kopen,.,bitcoin,.,korea,.,bitcoin,.,knowledge,.,bitcoin,.,kaufen,.,bitcoin,.,kurz,.,bitcoin,.,k line,.,bitcoin,.,k,.,bitcoin,.,k value,.,bitcoin,.,k chart,.,john k,.,bitcoin,.,bitcoin,.,k-market,.,k-market jätkäsaari,.,bitcoin,.,k čemu,.,bitcoin,.,bitcoin,.,live price,.,bitcoin,.,latest news,.,bitcoin,.,login,.,bitcoin,.,logo,.,bitcoin,.,ledger,.,bitcoin,.,live,.,bitcoin,.,local,.,bitcoin,.,lottery,.,bitcoin,.,london,.,bitcoin,.,loan,.,bitcoin,.,l-39,.,l-39,.,bitcoin,.,jet,.,bitcoin,.,l'altra faccia della moneta,.,l'ambassade,.,bitcoin,.,l'avenir du,.,bitcoin,.,l'histoire du,.,bitcoin,.,l'inventeur du,.,bitcoin,.,l'évolution du,.,bitcoin,.,l'avenir des,.,bitcoins,.,l'origine du,.,bitcoin,.,bitcoin,.,market,.,bitcoin,.,millionaire,.,bitcoin,.,mining software,.,bitcoin,.,meaning,.,bitcoin,.,mining hardware,.,bitcoin,.,machine,.,bitcoin,.,mining pool,.,bitcoin,.,magazine,.,bitcoin,.,mining rig,.,m,.,bitcoin,.,meaning,.,m.bitcoin2048,.,bitcoin,.,m of n,.,bitcoin,.,m of n transactions,.,siriusxm,.,bitcoin,.,triple m,.,bitcoin,.,m lhuillier,.,bitcoin,.,m pesa vs,.,bitcoin,.,m.bitcoin2048.com отзывы,.,mercado,.,bitcoin,.,bitcoin,.,news uk,.,bitcoin,.,network,.,bitcoin,.,net worth,.,bitcoin,.,news reddit,.,bitcoin,.,nodes,.,bitcoin,.,network fee,.,bitcoin,.,near me,.,bitcoin,.,nedir,.,bitcoin,.,news india,.,bitcoin.n,.,bitcoin,.,n.ireland,.,n&p,.,bitcoin,.,consulting,.,shares in,.,bitcoin,.,piotr_n,.,bitcointalk,.,piotr_n,.,bitcoin,.,m of n,.,bitcoin,.,bitcoinspot.n,.,bitcoin,.,or ethereum,.,bitcoin,.,owner,.,bitcoin,.,online,.,bitcoin,.,original price,.,bitcoin,.,offline wallet,.,bitcoin,.,online wallet,.,bitcoin,.,outlook,.,bitcoin,.,official site,.,bitcoin,.,on amazon,.,o,.,bitcoin,.,e seguro,.,o,.,bitcoinu,.,bitcoin,.,o'reilly,.,bitcoin,.,to aud,.,bitcoin,.,o'reilly pdf,.,bitcoin,.,to euro,.,bitcoin,.,to btc,.,sve o,.,bitcoin,.,o'reilly,.,bitcoin,.,and the blockchain,.,bitcoin,.,price gbp,.,bitcoin,.,predictions,.,bitcoin,.,price uk,.,bitcoin,.,price prediction,.,bitcoin,.,paper wallet,.,bitcoin,.,pizza,.,,.,bitcoin,.,price live,.,p np,.,bitcoin,.,r.i.p.,.,bitcoin,.,p-free,.,bitcoin,.,win32/bitcoinminer.p,.,bitcoin,.,qt,.,bitcoin,.,qr code,.,bitcoin,.,quote,.,bitcoin,.,quantum computing,.,bitcoin,.,que es,.,bitcoin,.,quora,.,bitcoin,.,questions,.,bitcoin,.,qt update,.,bitcoin,.,qt wallet location,.,bitcoin,.,quantum,.,bitcoin,.,q,.,bitcoin,.,q es,.,q son,.,bitcoins,.,q es un,.,bitcoin,.,q son los,.,bitcoins,.,q es el,.,bitcoin,.,q comprar con,.,bitcoins,.,bitcoins que significa,.,bitcoin,.,q significa,.,bitcoin,.,rate,.,bitcoin,.,reddit,.,bitcoin,.,review,.,bitcoin,.,rival,.,bitcoin,.,rate gbp,.,bitcoin,.,rise,.,bitcoin,.,regulation,.,bitcoin,.,rich list,.,bitcoin,.,rate history,.,bitcoin,.,regulation uk,.,r,.,bitcoinmarkets,.,r,.,bitcoin,.,uk,.,r,.,bitcoin,.,canada,.,r,.,bitcoin,.,cash,.,r,.,bitcoin,.,package,.,r,.,bitcointalk,.,r,.,bitcoin,.,mining,.,r,.,bitcoin,.,abc,.,r,.,bitcoin,.,analysis,.,bitcoinxt,.,bitcoin,.,share price,.,bitcoin,.,stock,.,bitcoin,.,split,.,bitcoin,.,segwit,.,bitcoin,.,stock price,.,bitcoin,.,shares,.,bitcoin,.,symbol,.,bitcoin,.,suisse,.,bitcoin,.,scams,.,bitcoin,.,stock market,.,bitcoins value,.,bitcoin,.,s curve,.,bitcoin,.,miners,.,gh/s,.,bitcoin,.,th/s,.,bitcoin,.,th/s,.,bitcoin,.,miner,.,mh/s,.,bitcoin,.,1th/s,.,bitcoin,.,miner,.,10th/s,.,bitcoin,.,miner,.,20th/s,.,bitcoin,.,miner,.,bitcoin,.,trading,.,bitcoin,.,to dollar,.,bitcoin,.,transaction,.,bitcoin,.,to £,.,bitcoin,.,ticker,.,bitcointalk,.,bitcoin,.,transaction fee,.,bitcoin,.,t shirt,.,bitcoin,.,t shirt uk,.,bitcoin,.,t shirt india,.,bitcoin,.,t shirt store,.,alpha-t,.,bitcointalk,.,bb&t,.,bitcoin,.,t-110,.,bitcoin,.,mining system,.,bitcoin,.,miner t720,.,bitcoin,.,usd,.,bitcoin,.,uk,.,bitcoin,.,unlimited,.,bitcoin,.,unconfirmed transaction,.,bitcoin,.,usd price,.,bitcoin,.,uk price,.,bitcoin,.,uasf,.,bitcoin,.,uk tax,.,bitcoin,.,update,.,bitcoin,.,uk exchange,.,why u,.,bitcoin,.,billionaire,.,bitcoin,.,u bosni,.,bitcoin,.,miner.u,.,bitcoin,.,u crnoj gori,.,bitcoin,.,youtube,.,bitcoin,.,u dinarima,.,wii u,.,bitcoin,.,utorrent,.,bitcoin,.,u.s.,.,bitcoin,.,exchange,.,bitcoin,.,u kune,.,bitcoin,.,value,.,,.,bitcoin,.,value chart,.,bitcoin,.,value history,.,bitcoin,.,value gbp,.,bitcoin,.,vs ethereum,.,bitcoin,.,vs usd,.,bitcoin,.,volatility,.,bitcoin,.,vs litecoin,.,bitcoin,.,value 2010,.,bitcoin,.,vs gold,.,bitcoin,.,v litecoin,.,bitcoin,.,v dollar,.,bitcoin,.,v euro,.,bitcoin,.,v gold,.,bitcoin,.,v blockchain,.,bitcoin,.,v onecoin,.,bitcoin,.,hack v.2,.,bitcoin,.,worth,.,bitcoin,.,wiki,.,bitcoin,.,wallet uk,.,bitcoin,.,what is it,.,bitcoinwisdom,.,bitcoin,.,whitepaper,.,bitcoin,.,wallet online,.,bitcoin,.,wallet address,.,bitcoin,.,wallet download,.,bitcoin,.,miner.w,.,bitcoin,.,w polsce,.,bitcoiny w polsce,.,bitcoin,.,w niemczech,.,bitcoin,.,w chmurze,.,bitcoin,.,w żabce,.,bitcoin,.,w polsce legalny,.,bitcoin,.,w chinach,.,bitcoin,.,w prawie polskim,.,bitcoin,.,w górę,.,bitcoin,.,xe,.,bitcoin,.,xbt,.,bitcoin,.,xt,.,bitcoin,.,xbte,.,bitcoin,.,xapo,.,bitcoin,.,xrp,.,bitcoin,.,xt price,.,bitcoin,.,xpub,.,x,.,bitcoin,.,generator,.,bitcoin,.,yahoo finance,.,bitcoin,.,year chart,.,bitcoin,.,year,.,bitcoin,.,yield,.,bitcoin,.,ytd,.,bitcoin,.,yubikey,.,bitcoin,.,yoda,.,bitcoin,.,yahoo finance chart,.,ybitcoin,.,magazine,.,bitcoin,.,y control de cambio,.,y combinator,.,bitcoin,.,ecuador y,.,bitcoin,.,bitcoin,.,by paypal,.,bitcoin,.,y el lavado de dinero,.,bitcoin,.,y deep web,.,bitcoin,.,y lavado de dinero,.,bitcoin,.,y litecoin,.,bitcoin,.,and blockchain,.,bitcoin,.,zebra,.,bitcoin,.,zerohedge,.,bitcoin,.,zimbabwe,.,bitcoin,.,zar,.,bitcoin,.,zcash,.,bitcoin,.,zapwallettxes,.,bitcoin,.,zarabianie,.,bitcoin,.,zug,.,bitcoin,.,zero,.,bitcoin,.,zero confirmations,.,bitcoin,.,z value,.,titan z,.,bitcoin,.,mining,.,titan z,.,bitcoin,.,z cash,.,bitcoin,.,nvidia titan z,.,bitcoin,.,mining,.,nvidia titan z,.,bitcoin,.,nakup zlata z,.,bitcoini,.,sklep z,.,bitcoinami,.,trgovanje z,.,bitcoini,.,co z,.,bitcoinem,.,bitcoin,.,0 confirmations,.,bitcoin,.,0.1,.,bitcoin,.,0.1.0,.,bitcoin,.,0 active connections,.,bitcoin,.,0 transaction fee,.,bitcoin,.,0 fee,.,0.15,.,bitcoins,.,0 25,.,bitcoins,.,0.05,.,bitcoin,.,in euro,.,bitcoin,.,2.0,.,0.1,.,bitcoins,.,0.21,.,bitcoins,.,bitcoin,.,1st august,.,bitcoin,.,1 million,.,bitcoin,.,101,.,bitcoin,.,10 year chart,.,bitcoin,.,10000,.,bitcoin,.,148,.,,.,bitcoin,.,10 year prediction,.,bitcoin,.,100k,.,bitcoin,.,100 dollars,.,bitcoin,.,10 years ago,.,1,.,bitcoin,.,in gbp,.,1,.,bitcoin,.,in pounds,.,1,.,bitcoin,.,in £,.,1,.,bitcoin,.,to dollar,.,1,.,bitcoin,.,in inr,.,1,.,bitcoin,.,to euro,.,1,.,bitcoin,.,in gdp,.,1,.,bitcoin,.,in eur,.,1,.,bitcoin,.,to myr,.,1,.,bitcoin,.,in sterling,.,bitcoin,.,2010,.,bitcoin,.,2017,.,bitcoin,.,2020,.,bitcoin,.,2018,.,bitcoin,.,2009,.,bitcoin,.,2013,.,bitcoin,.,21 million,.,bitcoin,.,2012,.,bitcoin,.,2014,.,2,.,bitcoin,.,to usd,.,2,.,bitcoin,.,price,.,2,.,bitcoin,.,to inr,.,2,.,bitcoin,.,wallets,.,2,.,bitcoins to dollars,.,2,.,bitcoins free,.,2,.,bitcoins a month,.,2,.,bitcoin,.,qt,.,bitcoin,.,2 year chart,.,bitcoin,.,2 paypal,.,bitcoin,.,3000,.,bitcoin,.,31st july,.,bitcoin,.,3 confirmations,.,bitcoin,.,3.0,.,bitcoin,.,3 year chart,.,bitcoin,.,3 month chart,.,bitcoin,.,300,.,bitcoin,.,365 club,.,bitcoin,.,3000 usd,.,bitcoin,.,30 confirmations,.,3,.,bitcoins in gbp,.,3,.,bitcoins,.,3,.,bitcoins to usd,.,3,.,bitcoin,.,in euro,.,3,.,bitcoin,.,to eur,.,bitcoin,.,3 unlimited,.,bitcoin,.,3 day chart,.,bitcoin,.,3 address,.,bitcoin,.,4000,.,bitcoin,.,4chan,.,bitcoin,.,4 billion,.,bitcoin,.,401k,.,bitcoin,.,4 backpage,.,bitcoin,.,43,.,bitcoin,.,40000,.,bitcoin,.,4k,.,bitcoin,.,4 year chart,.,bitcoin,.,48,.,4,.,bitcoins,.,4,.,bitcoins to usd,.,4,.,bitcoins in gbp,.,4,.,bitcoin,.,to eur,.,bitcoins 4 backpage,.,bitcoin,.,4 igaming,.,bitcoin,.,4 u,.,bitcoin,.,4 november,.,bitcoin,.,4 cash,.,bitcoin,.,5 year chart,.,bitcoin,.,51 attack,.,bitcoin,.,500,.,bitcoin,.,5 year,.,bitcoin,.,500 000,.,bitcoin,.,5000,.,bitcoin,.,50000,.,bitcoin,.,5 year price,.,bitcoin,.,5 years ago,.,bitcoin,.,5 year forecast,.,5,.,bitcoins in pounds,.,5,.,bitcoins,.,5,.,bitcoins to usd,.,5,.,bitcoin,.,free,.,5,.,bitcoin,.,in euro,.,bitcoin,.,5 years,.,bitcoin,.,5 minutes,.,bitcoin,.,5 min,.,bitcoin,.,5 unlimited generator,.,bitcoin,.,666,.,bitcoin,.,6 months,.,bitcoin,.,6 confirmations,.,bitcoin,.,6 month chart,.,bitcoin,.,6000,.,bitcoin,.,60 minutes,.,bitcoin,.,6 confirmations time,.,bitcoin,.,6 month price,.,bitcoin,.,6 years ago,.,bitcoin,.,60 day chart,.,6,.,bitcoin,.,network confirmations,.,,.,
submitted by besterse to BestCryptoPlatform [link] [comments]

The PHANTOM Technical Whitepaper[Version 0.1] The PHANTOM TeamPHANTOM Technical Whitepaper V2 pass2

We considered the attack strategy when the attacker tried to double the expenses by "over" the system speed. A “massive” attack means that, in order to double the expenses, the attacker tries to give the dual spending transaction a very large weight so that it will exceed the legal subtleties. When the allowed weight is unbounded, s policy is a threat to the network. As a solution, we can limit the transaction's own weight from above, or set it to a constant value. When the maximum self-priority of a transaction is m, the best attack strategy is to generate a transaction with its own weight, m, that refers to a dual-overhead transaction. When the INP is compared to the attacker's computing power, the ut flow of an "honest" transaction is large enough so that it is possible to estimate the likelihood of a double-spending transaction having a greater cumulative weight. formula). The attack method of constructing the "parasite chain" makes the height or score-based approval strategy obsolete because the attacker's site has higher value on these indexes than LE. The ultimate tangled. On the other hand, the PhantomTip selection algorithm described in Section 4.1 seems to provide protection against such attacks. The Phantom hint selection algorithm also provides extra incentives to prevent delay nodes. Resistance of F. to quantum computing It is well known that a sufficiently large quantum computer 35 can very effectively deal with problems that rely on trial and error to find a solution. Finding a "now" process, eating a bitcoin block is a good example. Since today, we must check an average of 268 non-CES to find a suitable hash that allows new blocks to be generated. (Everybody knows) TOM computer words need to handle INSTRON(N) operations to solve problems similar to the Bitcoin puzzle mentioned above. The same problem also requires INSTEM(N) operations on a classic Song computer. Therefore, the quantum computation r value is about 268 = 234 ≈ 17 billion times, which is more efficient than a classical computer on mining a bitcoin blockchain. In addition, it is worth noting that if a blockchain does not increase its difficulty, as a response to increased hash capabilities, the rate of isolated blocks will be increased. For the same reason, "heavy weight" attacks will also be more effective on quantum computers. However, as suggested in Section 4, limiting the weight from above will effectively prevent qua, as will computer attacks. This is obvious because the number of that need to be checked to find the right hash to issue a non-Ces transaction is not unreasonable. Age on Aver is about 38 years old. Therefore, the "ideal" quantum computer's efficiency gain is 34 = 81, which is quite acceptable. What's more, the algorithm used to implement the structure is such a time to find a random number. In order to obtain a wide range of applications, the applications on the chain need a platform that is flexible enough to meet the following requirements: Supporting millions of users to compete with companies such as ebay, uber, airbnb, and facebook requires high-performance technologies capable of handling tens of millions of active users. In some cases, the application may not reach a critical number of users, so a platform that can handle a large number of users is crucial. Cross-chain transaction of Free Usage Application developers of cross-chain transaction need to provide users with the flexibility to trade cross-chain transactions for free; users should not pay to use the platform or benefit from their services. A blockchain platform, which is freely available to users, may be used more widely. Developers and companies can develop effective cross-chain monetization strategies. Easy to upgrade and failback Businesses building blockchain-based applications need the flexibility to enhance the new features of their applications. The platform must support software and smart contract upgrades. All non-trivial software is affected by errors, even the most rigorous formal verification. The platform must be robust enough to fix bugs when bugs inevitably occur. Low latency A good user experience requires reliable feedback with a delay of no more than a few seconds. Longer delays can frustrate users and make applications built on the blockchain uncompetitive with existing NOs. N-block chain alternatives: the platform should support low latency for transaction latency. Due to the order-dependent steps of DPOS's large super nodes, some applications cannot implement parallel algorithms. Applications such as swaps need enough sequential performance to handle hi. Gh volume. Therefore, the platform should support fast sequential performance. Parallel performance Large applications need to divide workloads across multiple CPUs and computers. Consensus algorithm (BFT) The PHANTOM.IO software uses the only known decentralized consensus DPOS algorithm. This algorithm can satisfy the performance requirements of the application program on the blockchain, that is, the trust proof of delegation (DPO). Lander algorithm, using PHANTOM.IO software to hold tokens on the blockchain, can select block producers through a continuous approval voting system. Anyone can choose to join the block. Produce, and will have the opportunity to produce blocks, as long as they can persuade token holders to vote for them. PHANTOM.IO software allows blocks to be generated precisely every 0.5 seconds, and exactly one producer is authorized to generate blocks at any given point in time. If there is no editing time in the SCH generation block, then skip the block of that time slot. When one or more blocks are skipped, there is an interval of 0.5 or more seconds in the blockchain. Used in software, blocks are produced in n rounds (x blocks per unit, n producers per time). At the beginning of each round, n unique producers were decided by Toke's vote. n holder, the selected manufacturer arranges the order according to the agreement of n or more manufacturers. If a producer misses a block and has not produced any blocks in the past 24 hours, they will be considered to be removed from therein until they inform the blockchain that they intend to start producing blocks. Gain: it ensures that the network runs smoothly, by minimizing the number of blocks missed by the non-scheduled producers, which have proven to be unreliable. Under normal circumstances, the DPOS blockchain does not experience any bifurcation because block producers cooperate in producing blocks rather than compete. If there is a fork, the consensus will switch to the longest chain in automatic way. This method works because the speed at which blocks are added to a block fork is directly related to the percentage of block producers that share the same block. DPOS consensus: in other words, the length of the blockchain forks of more manufacturers grows faster than the lesser forks of manufacturers, because the more producers, the less the forks, and they are ignored. In addition, any block manufacturer should not produce two fork blocks at the same time. A block maker that prevents doing so is likely to be eliminated. This type of cryptographic evidence for dual production of m can also be used to automatically clear abusers. Byzantine fault tolerance was added to the traditional handicapped organization, allowing all producers to sign all blocks as long as no producer marks two blocks with the same time stamp or the same block height. A 15-minute painter has signed a block that is considered irreversible. Any Byzantine writer must sign two blocks with the same time stamp or block, resulting in treasonable cryptographic evidence. Under this model, an irreversible consensus should be reached within 1 second. Transaction confirmation A typical association of organizations of persons with disabilities has 100% of producers involved. After an average transaction time of 0.25 seconds, the transaction can be considered as confirming 99.9% certainty. In addition to disabled people's organizations, PHANTOM.IO also added asynchronous Byzantine Fault Tolerance (ABFT) to accelerate irreversibility. The aBFT algorithm provides 100% irreversibility confirmation within 1Seco. The software requires that each transaction contain a portion of the hash of the most recent block header. This hash provides two purposes: To prevent replay of transactions on forks that do not include reference blocks; and Signals when a particular user and their listed shares are placed on a particular fork. Over time, all users will eventually confirm the blockchain directly, which makes it difficult to fake chains because fakes cannot migrate transactions from legitimate chai. Haploid generation (code) Named permission levels For use in software, accounts can define named permission levels, and each permission level can be derived from higher level named permissions. Each named privilege level defines one privilege; one privilege is a threshold multi-signature check that consists of the keys and/or naming privilege levels of other accounts. For example, the “Friends” permission level on the account can be set to be controlled equally by any friend of the account. Another example is the Steem blockchain, which has three hard-coded named permission levels: owner, activity and release. Delivery licenses can only perform social actions such as voting and post-processing, while Active permissions can do everything except change the owner. The owner's permission is for refrigerated and can do all things. The PHANTOM.IO software allows each account holder to define their own hierarchy and grouping of actions. Permission mapping The PHANTOM.IO software allows each account to define the mapping between any other account's contracts/operations or contracts and their own named permission levels. For example, account holders can map ac. The counting holder's social media applies for the account holder's "friend" permission group. With this map, any friend can post the account holder’s identity on the account holder’s social media. Even numbers, they will put their account holders, they still use their own keys to sign the action. This means that it is always possible to determine which friends use the account and how to use it. Evaluation authority When an action of "Action" is passed, the PHANTOM.IO software will first check whether Alicepc's permission map. If nothing is then mapping. If no more matches are found, the map is assumed to point to the named permission group Once the mapping is identified, the threshold multi-signature process and the rights associated with the naming authority verify the signature authority. If it fails, it will move upwards. Go to parent permissions and eventually point to owner permissions. Default permission group The technology also allows all accounts to have an "Owner" group that can complete all tasks, and can do any "Activity" group other than changing the owner group. All other permission groups S are derived from "activity". Parallel Computing of Permission The permission evaluation process is "read-only" and changes to the permissions of the transaction do not take effect until the end of the block. This means that all keys and permission calculation transactions can be executed in parallel. In addition, it means that you can quickly verify permissions without starting expensive application logic, and these logic must be rolled back. Finally, it means that transaction privileges can be evaluated when pending transactions are received without having to re-evaluate them when applied. For all things considered, privilege validation represents a significant percentage of the calculations needed to validate transactions, making this a read-only and trivial parallel process can greatly improve performance. When replaying to regenerate a deterministic state from the operation log, there is no need to re-evaluate the rights. The block of facts contained in the known product is sufficient to skip this step, which greatly reduces the computational load associated with replaying a growing blockchain. Actions of mandatory delays Time is a key component of security. In most cases, it is not possible to know if the private key has been stolen until it is used. Time-based security is used when people have applications that require a key to be stored on a computer connected to the Internet for daily use. PHANTOM.IO software enables application developers to indicate certain operations that must wait for the minimum value of each operation, and they can be applied after being included in a block. During this time, they can be cancelled. When these operations are broadcasted, users can receive notifications via email or text messages. If they are not authorized, then they can use the account recovery process to restore their account d withdrawal actions. The delay required depends on how sensitive the operation is. Buying coffee may not be delayed and is irreversible within a few seconds, while buying a house may require a 72-hour clean-up time. It may take up to 30 days for the entire account to be handed over to the new control. The actual delay is chosen by the application developer and the user. Application deterministic parallel execution Blockchain consensus depends on deterministic (repeatable) behavior. It means that all parallel executions must be freed from the use of mutexes or other locking primitives. Without locks, there must be some way to ensure that transactions that can be executed in parallel do not produce ambiguous results. Software designed in 2018 will run a single thread, but it contains the data structures necessary for future multithreaded, parallel execution. Based on PHANTOM.IO software, once the parallel operation is enabled, the task of the block manufacturer is to transfer the actions to independent fragments so that they can be evaluated. The schedule is the output of the block producer and will be executed, but the process of generating the schedule is not deterministic. This means that block producer S can use parallel algorithms to schedule transactions. When part of the parallel execution means that when a script generates a new Action, it will not be delivered immediately, but it plans to deliver it in the next cycle. The reason is that it cannot be Ivered immediately because the receiver may actively modify its state in another fragment. Minimum communication delay Delay is the time it takes for receiving a response after an account sending an Action to another account. The goal is to enable two accounts to exchange operations back and forth in a single block. There is no need to wait 0.5 seconds between each action. To achieve this, PHANTOM.IO software divides each block into loops. Each loop is divided into fragments and each fragment contains a trans-list of actions. Each transaction contains a set of operations to be delivered. This structure can be visualized as a tree in which alternating layers are processed sequentially and in parallel. Region Cycle (order) Fragments (parallel) Transaction (order) Action (order) Receiver and notification account (parallel) Transactions generated in one cycle can be delivered in any subsequent cycle or block. The block generator will always add a loop to the block until the maximum wall-clock time passes or there is no n. EW generates the transaction to be delivered. You can use static analysis of blocks to verify that in a given period, no two fragments contain transactions that modify the same account. As long as the invariants remain unchanged, the block ca will remain unchanged. n Processes by running all fragments in parallel. Read-only operation handler Some accounts may be able to handle a pass/fail based operation without modifying their internal state. If this is the case, these handlers can be executed in parallel as long as they are read only. The Ly operation handler for a particular account is contained in one or more shards within a specific period. Multi-account atomic transactions Sometimes it is necessary to ensure that actions are delivered and accepted by multiple accounts. In this case, both operations are placed in one transaction and two accounts will be allocated. The same pieces and actions apply in sequence. Non-equilibrium partial evaluation Scale block chain technology requires that the components be modular. Everyone doesn't have to run everything, especially if they only need to use a small part of the application. Exchange application developers run full nodes to display Exchange status to users. This exchange application does not require the status associated with social media. The software allows any full node to select any subset of applications to run. If the application never depends on stat, operations passed to other applications will be safely ignored. Subjective best effort scheduling The software cannot force the vendor to pass any action to any other account. Each block producer makes its own subjective measurement of computational complexity and time. This applies to whether a transaction is generated by a user or automatically generated by a smart contract. In the boot blockchain using PHANTOM.IO software, at the network level, all transactions count toward the computational bandwidth cost based on the number of WASM instructions executed. However, each block producer using the software can use its own algorithms and metrics to calculate resource usage. When a block producer concludes that a deal or account has consumed a prop. When generating their own blocks, they simply reject the transaction; however, if other block producers consider the transaction, they will still process the transaction. In general, as long as a block producer considers a transaction to be valid, and all other block producers accept it under resource use restrictions, it may take 1 minute to find the producer's transaction. In some cases, the producer may create a block that contains a transaction that is out of the acceptable range. In this case, the next block producer may choose to reject block D. The tie will be broken by the third producer. This is no different from what would happen if a large block caused network propagation delays. The society has noticed a pattern of abuse. Remove ballots from hooligan producers. This subjective evaluation of computational costs has forced people to accurately measure the time to run. With this design, there is no need for PRESI. Calculating directives greatly increases the opportunity for optimization without breaking the consensus. Proof of integrity When using the proof of Merkle from an external blockchain, there is a big difference between knowing that all transactions are valid and knowing that no transactions have been skipped or OMI. Although it is impossible to prove that all the recent transactions are known, it can be proved that there are no loopholes in the history of the transaction. PHANTOM.IO Software Tool is achieved by assigning a serial number to each operation passed to each account. Users can use these serial numbers to prove that all operations for a specific account have been processed. And they are processed in order. Conclusions PHANTOM.IO software is designed based on proven concepts and best practices and represents the basic progress of blockchain technology. The software is part of the overall blueprint. For a blockchain society with global scalability, decentralized applications can be easily deployed and managed.
submitted by phantomusa to 195 [link] [comments]

MINING ZONE 2020  FAST Free BITCOIN Mining Site  Bonus 500 Gh/s  Daily Earn Free Bitcoin FREE BITCOIN CLOUD MINING SITE 2020 WITH FREE 1000 GH/s FREE 0.001 BTC New Script BestMining Auto Claim GH/s  No Need Capture  Via Termux Fast Free Bitcoin Mining Site 2020  Free Bonus 100 Gh/s  Free Earn Bitcoin How to get 100% FREE UNLIMITED Bitcoin in 2020!  New Easy Working Method

Convert Bitcoins to Ghanaian Cedis with a conversion calculator, or Bitcoins to Cedis conversion tables. Also, view Bitcoin to Cedi currency charts. Get also a Bitcoin to Cedi currency converter widget or currency conversion guide sheet or chart for your website. Get also a Bitcoin to Cedi currency converter widget or currency conversion guide sheet or chart for your website. So, you've converted 400 Ghanaian Cedi to 0.007467 Bitcoin.We used 53567.80 International Currency Exchange Rate. We added the most popular Currencies and CryptoCurrencies for our Calculator. The Bitcoin price is rising at a slightly lesser 0.3403% per day over the past year. We suggest you enter a custom Bitcoin price into our calculator based on what you expect the average price to be over the next year. The price has gone down for most of the past year, which is a factor that should be strongly considered in your calculations. Bitcoin (BTC) mining profit depending on your hash rate, power consumption and electricity cost. Bitcoin (BTC) Mining Calculator $9150.11 $41.86 $68.85 $68.95 $232.31 $58.28 $6.01 Accurate Bitcoin mining calculator trusted by millions of cryptocurrency miners. Updated in 2020, the newest version of the Bitcoin profit calculator makes it simple and easy to quickly calculate mining profitability for your Bitcoin mining hardware.

[index] [30629] [4793] [1118] [12331] [3569] [119] [16504] [1301] [28211] [29877]

MINING ZONE 2020 FAST Free BITCOIN Mining Site Bonus 500 Gh/s Daily Earn Free Bitcoin

Try it out with our Mining Power calculator and get 800 GH/s for free on sign up! ... Free Bitcoin Could Mining Site Without Invest minershash Reviews - Duration: 5:39. bitcoin calculator bitcoin chart bitcoin cash price bitcoin cost bitcoin crash bitcoin cash app ... bitcoin exchange rate bitcoin explained bitcoin explorer bitcoin emoji bitcoin ethereum New bitcoin mining site,bitcoin,Btc,New Bitcoin cloud Mining site,Free paypal money ,Money making apps,Paypal money making apps,Arslan nasir,Tecnical anant g,Bangla,Hindi,English,Online earning ... How To Exchange Your TBC to BITCOIN 2019 - Duration: 7:13. Blue Techs 12,051 views. 7:13. How To Speak by Patrick Winston - Duration: 1:03:43. MIT OpenCourseWare Recommended for you. "bitcoin earn" channel make real paid sites tutorials for earn free bitcoin and make real earning Loading... Autoplay When autoplay is enabled, a suggested video will automatically play next.

Flag Counter